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Abstract

We tested the hypothesis that fixation locations during scene viewing are primarily
determined by visual salience. Eye movements were collected from participants who
viewed photographs of real-world scenes during an active search task. Visual salience as
determined by a popular computational model did not predict region-to-region saccades
or saccade sequences any better than did a random model. Consistent with other reports
in the literature, intensity, contrast, and edge density differed at fixated scene regions
compared to regions that were not fixated, but these fixated regions also differ in rated
semantic informativeness. Therefore, any observed correlations between fixation locations
and image statistics cannot be unambiguously attributed to these image statistics. We
conclude that visual saliency does not account for eye movements during active search.
The existing evidence is consistent with the hypothesis that cognitive factors play the
dominant role in active gaze control.
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During real-world scene perception, we move our eyes about three times each second via
very rapid eye movements (saccades) to reorient the high-resolving power of the fovea.
Pattern information is acquired only during periods of relative gaze stability (fixations)
due to a combination of central suppression and visual masking (Matin, 1974; Thiele,
Henning, Buishik, & Hoffman, 2002; Volkman, 1986). Gaze control is the process of
directing the eyes through a scene in real time in the service of ongoing perceptual,
cognitive, and behavioral activity (Henderson, 2003; Henderson & Hollingworth, 1998,
1999).

There are at least three reasons that the study of gaze control is important in real-world
scene perception (Henderson, 2003; Henderson & Ferreira, 2004a). First, human vision is
active, in the sense that fixation is directed toward task-relevant information as it is needed
for ongoing visual and cognitive computations. Although this point seems obvious to eye
movement researchers, it is often overlooked in the visual perception and visual cognition
literatures. For example, much of the research on real-world scene perception has used
tachistoscopic display methods in which eye movements are not possible (though see
Underwood, this part; Gareze & Findlay, this part). While understanding what is initially
apprehended from a scene is an important theoretical topic, it is not the whole story;
vision naturally unfolds over time and multiple fixations. Any complete theory of visual
cognition, therefore, requires understanding how ongoing visual and cognitive processes
control the direction of the eyes in real time, and how vision and cognition are affected
by where the eyes are pointed at any given moment in time.

Second, eye movements provide a window into the operation of selective attention.
Indeed, although internal (covert) attention and overt eye movements can be dissociated
(Posner & Cohen, 1984), the strong natural relationship between covert and overt atten-
tion has recently led some investigators to suggest that studying covert visual attention
independently of overt attention is misguided (Findlay, 2004; Findlay & Gilchrist, 2003).
For example, as Findlay and Gilchrist (2003) have noted, much of the research in the
visual search literature has proceeded as though viewers steadfastly maintain fixation dur-
ing search, allocating attention only via an internal mechanism. However, visual search
is virtually always accompanied by saccadic eye movements (e.g., see the chapters by
Hooge, Vlaskamp, & Over, this part; Shen & Reingold, this part). In fact, studies of visual
search that employ eye tracking often result in different conclusions than do studies that
assume the eyes remain still. As a case in point, eye movement records reveal a much
richer role for memory in the selection of information for viewing (e.g. McCarley, Wang,
Kramer, Irwin, & Peterson, 2003; Peterson, Kramer, Wang, Irwin, & McCarley, 2001)
than research that uses more traditional measures such as reaction time (e.g. Horowitz &
Wolfe, 1998). To obtain a complete understanding of the role of memory and attention
in visual cognition, it is necessary to understand eye movements.

Third, because gaze is typically directed at the current focus of analysis (see Irwin,
2004, for some caveats), eye movements provide an unobtrusive, sensitive, real-time
behavioral index of ongoing visual and cognitive processing. This fact has led to enormous
insights into perceptual and linguistic processing in reading (Liversedge & Findlay, 2000;
Rayner, 1998; Sereno & Rayner, 2003), but eye movements are only now becoming
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a similarly important tool in the study of visual cognition generally and scene perception
in particular.

1. Fixation placement during scene viewing

A fundamental goal in the study of gaze control during scene viewing is to understand
the factors that determine where fixation will be placed. Two general hypotheses have
been advanced to explain fixation locations in scenes. According to what we will call the
visual saliency hypothesis, fixation sites are selected based on image properties generated
in a bottom-up manner from the current scene. On this hypothesis, gaze control is, to a
large degree, a reaction to the visual properties of the stimulus confronting the viewer.
In contrast, according to what we will call the cognitive control hypothesis, fixation sites
are selected based on the needs of the cognitive system in relation to the current task. On
this hypothesis, eye movements are primarily controlled by task goals interacting with a
semantic interpretation of the scene and memory for similar viewing episodes (Hayhoe &
Ballard, 2005; Henderson & Ferreira, 2004a). On the cognitive control hypothesis, the
visual stimulus is, of course, still relevant: The eyes are typically directed to objects and
features rather than to uniform scene areas (Henderson & Hollingworth, 1999); however,
the relevance of a particular object or feature in the stimulus is determined by cognitive
information-gathering needs rather than inherent visual salience.

The visual saliency hypothesis has generated a good deal of interest over the past several
years, and in many ways has become the dominant view in the computational vision
literature. This hypothesis has received primary support from two lines of investigation.
First, computational models have been developed that use known properties of the visual
system to generate a saliency map or landscape of visual salience across an image (Itti &
Koch, 2000, 2001; Koch & Ullman, 1985). In these models, the visual properties present
in an image give rise to a 2D map that explicitly marks regions that are different from
their surround on image dimensions such as color, intensity, contrast, and edge orientation
(Itti & Koch, 2000; Koch & Ullman, 1985; Parkhurst, Law, & Niebur, 2002; Torralba,
2003), contour junctions, termination of edges, stereo disparity, and shading (Koch &
Ullman, 1985), and dynamic factors such as motion (Koch & Ullman, 1985; Rosenholtz,
1999). The maps are generated for each image dimension over multiple spatial scales and
are then combined to create a single saliency map. Regions that are uniform along some
image dimension are considered uninformative, whereas those that differ from neighboring
regions across spatial scales are taken to be potentially informative and worthy of fixation.
The visual saliency map approach serves an important heuristic function in the study
of gaze control because it provides an explicit model that generates precise quantitative
predictions about fixation locations and their sequences, and these predictions have been
found to correlate with observed human fixations under some conditions (e.g., Parkhurst
et al., 2002).

Second, using a scene statistics approach, local scene patches surrounding fixation
points have been analyzed to determine whether fixated regions differ in some image
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properties from regions that are not fixated. For example, high spatial frequency content
and edge density have been found to be somewhat greater at fixated than non-fixated
locations (Mannan, Ruddock, & Wooding, 1996, 1997b). Furthermore, local contrast (the
standard deviation of intensity in a patch) is higher and two-point intensity correlation
(intensity of the fixated point and nearby points) is lower for fixated scene patches than
control patches (Krieger, Rentschler, Hauske, Schill, & Zetzsche, 2000; Parkhurst &
Neibur, 2003; Reinagel & Zador, 1999).

Modulating the evidence supporting the visual saliency hypothesis, recent evidence
suggests that fixation sites are tied less strongly to saliency when meaningful scenes are
viewed during active viewing tasks (Land & Hayhoe, 2001; Turano, Geruschat, & Baker
2003). According to one hypothesis, the modulation of visual salience by knowledge-driven
control may increase over time within a scene-viewing episode as more knowledge is
acquired about the identities and meanings of previously fixated objects and their relation-
ships to each other and to the scene (Henderson, Weeks, & Hollingworth, 1999). How-
ever, even the very first saccade in a scene can often take the eyes in the likely direc-
tion of a search target, whether or not the target is present, presumably because the global
scene gist and spatial layout acquired from the first fixation provide important informa-
tion about where a particular object is likely to be found (Antes, 1974; Brockmole &
Henderson, 2006b; Castelhano & Henderson, 2003; Henderson et al., 1999; Mackworth &
Morandi, 1967).

Henderson and Ferreira (2004a) sorted the knowledge available to the human gaze
control system into several general categories. Information about a specific scene can be
learned over the short term from the current perceptual encounter (short-term episodic
scene knowledge) and over the longer term across multiple encounters (long-term episodic
scene knowledge). Short-term knowledge underlies a viewer’s tendency to refixate areas
of the current scene that are semantically interesting or informative (Buswell, 1935;
Henderson et al., 1999; Loftus & Mackworth, 1978; Yarbus, 1967), enables the prioritiza-
tion of newly appearing or disappearing objects from a scene (Brockmole & Henderson,
2005a, 2005b), and ensures that objects are fixated when needed during motor interaction
with the environment (Land & Hayhoe, 2001). Long-term episodic knowledge involves
information about a particular scene acquired and retained over time. Recent evidence
suggests that good memory for the visual detail of fixated regions of a viewed scene is
preserved over relatively long periods of time (Castelhano & Henderson, 2005; Henderson
& Hollingworth, 2003; Hollingworth, 2004; Hollingworth & Henderson, 2002; Williams,
Henderson, & Zacks, 2005; for review see Henderson & Castelhano, 2005). The con-
textual cueing phenomenon shows that perceptual learning of complex visual images
can take place relatively rapidly over multiple encounters (Chun & Jiang, 1998), and
this effect has been shown to influence eye movements (Peterson & Kramer, 2001). We
have recently found that this same type of learning can take place even more rapidly for
real-world scenes (Brockmole & Henderson, 2006a). Furthermore, we have shown that
these learned representations can facilitate eye movements during search in real-world
scenes (Brockmole & Henderson, 2006b). Another interesting example of the influence
of episodic scene knowledge on gaze control is the finding that viewers will often
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fixate an empty scene region when that region previously contained a task-relevant object
(Altmann, 2004; Richardson & Spivey, 2000).

A second source of information that can guide gaze is scene schema knowledge, the
generic semantic and spatial knowledge about a particular category of scene (Biederman,
Mezzanotte, & Rabinowitz, 1982; Friedman, 1979; Mandler & Johnson, 1977). Schema
knowledge includes information about the objects likely to be found in a specific type
of scene (e.g., bedrooms contain beds) and spatial regularities associated with a scene
category (e.g., pillows are typically found on beds), as well as generic world knowledge
about scenes (e.g., beds do not float in the air). Scene identity can be apprehended and a
scene schema retrieved very rapidly (Potter, 1976; Schyns & Oliva, 1994), and schema
knowledge can then be used to limit initial fixations to scene areas likely to contain an
object relevant to the current task (Henderson et al., 1999).

A third source of information important in gaze control is task-related knowledge
(Buswell, 1935; Yarbus, 1967). Task-related knowledge can involve a general gaze control
policy or strategy relevant to a given task, such as periodically fixating the reflection
in the rear-view mirror while driving, and moment-to-moment control decisions based
on ongoing perceptual and cognitive needs. Gaze control differs during complex and
well-learned activities such as reading (Rayner, 1998), tea and sandwich making (Land &
Hayhoe, 2001), and driving (Land & Lee, 1994). The distribution of fixations over a
given scene changes depending on whether a viewer is searching for an object or trying
to memorize that scene (Henderson et al., 1999). Gaze is also strongly influenced by
moment-to-moment cognitive processes related to spoken language comprehension and
production (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995; see Henderson &
Ferreira, 2004b).

2. Present study

As reviewed above, there is abundant evidence that fixation placement during scene
viewing is strongly affected by cognitive factors. Most proponents of the visual saliency
hypothesis acknowledge that cognitive factors play a role in gaze control, but they tend
to focus on the adequacy of a saliency-based approach to account for much of the data
on fixation placement (e.g., Parkhurst et al., 2002).

In the present study, we investigated further the degree to which fixation location
is related to image properties during scene viewing. First, we collected eye movement
data from participants who viewed full-color photographs of real-world outdoor scenes
while engaged in a visual search task in which they counted the number of people who
appeared in each scene. We then analyzed the fixation data in three ways to investigate
the adequacy of the visual saliency hypothesis. First, we compared the fixation data
against the predictions generated from an established visual saliency model. Second, we
conducted an image statistics analysis to determine whether image properties differed
at fixated and non-fixated locations. Third, we tested whether any observed correlations
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between fixation locations and image statistics might be due to the meaning of the fixated
locations. Our conclusion is that the evidence supporting the visual saliency hypothesis
is weak, and that the existing evidence is consistent with the hypothesis that cognitive
factors play the dominant role in gaze control.

2.1. Method

The eye movements of 8 Michigan State University undergraduates were monitored
as they viewed 36 full-color photographs of real-world outdoor scenes displayed on
a computer monitor (see, e.g., Figure 1). The photographs were shown at a resolu-
tion of 800 × 600 pixels and subtended 16 deg. horizontally by 12 deg. vertically at a
viewing distance of 113 cm. Eye position was sampled at a rate of 1000 Hz from a
Fourward Technologies Generation 5.5 Dual Purkinje Image Eyetracker, and raw eye-
tracking data were parsed into fixations and saccades using velocity and distance criteria

Figure 1. Top left: Original scene. Top middle: Model-determined salient regions in the scene. Top right:
Fixation locations from all participants. Bottom: Scene with salient regions and participant fixations overlaid.
Red dots show participant fixations within a salient region. Red tails mark saccade paths that originated in a
non-salient region. Green dots denote participant fixations outside of the salient regions. (See Color Plate 3.)
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(Henderson et al., 1999). The subject’s head was held steady with an anchored bite-bar
made of dental impression compound. Prior to the first trial, subjects completed a pro-
cedure to calibrate the output of the eyetracker against spatial position on the display
screen. This procedure was repeated regularly throughout the experiment. Observers were
instructed to count the number of people in each photograph. Each participant saw all 36
scenes in a different random order. Each photograph contained between 0 and 6 people
and was presented until the participant responded or for 10 s. maximum. Across all search
photographs, accuracy on the counting task was 82%, with greater accuracy for scenes
with fewer targets present. Accuracy was below 100% because some targets were well
hidden and difficult to find in the scenes.

3. Analysis 1: Comparing saliency model predictions to human fixations

A benchmark for the visual saliency hypothesis is the saliency map model of Itti and Koch
(2000, 2001). This model produces explicit predictions about where viewers should fixate
in complex images. The Itti and Koch model has been shown to predict human fixations
reasonably well under some conditions (e.g., Parkhurst et al., 2002), though Turano et al.
(2003) demonstrated that the correlations between the model and human fixations were
eliminated when the viewing task was active. However, one could argue that this latter
result was a consequence of the dynamic interaction between a moving viewer and the
real world, a situation for which the model was not specifically developed. In Analysis 1,
we examined the degree to which the Itti and Koch saliency map model is able to predict
fixation locations in static scenes (the situation for which it was developed) during an
active visual search task.

3.1. Do Human Fixations Fall on the Most Visually Salient Regions?

In a first analysis we compared the number of saccadic entries into, and the number of
discrete fixations in, the scene regions that the saliency map model specified as most
salient. For this analysis, the Itti and Koch bottom-up saliency model posted on the website
[http://ilab.usc.edu/toolkit/downloads.shtml] on 16 May 2005, was used to determine the
visually salient regions in each of our test scenes. The model “viewed” the scenes for 10 s
each (the same amount of time given to the participants) with a foveal radius of 1�. While
viewing each scene, the model generated a cumulative saliency map showing the scene
regions that it found most salient over the 10 s of viewing. Any region in these cumulative
saliency maps that held a value greater than zero was defined as a salient region in the eye
movement analysis. To better understand the relationship between the regions the Itti and
Koch model found salient and the regions participants fixated while viewing the scenes,
two measures of the participants’ eye movements were examined, Salient Region Entries
and Salient Region Fixations. “Salient Region Entries” was defined as the proportion
of all participant-generated saccades that started outside of a given salient region and
landed in that region. This measure captures the degree to which the eyes tended to
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Figure 2. Spatial distribution of all participant-generated fixations across all scenes. The figure shows an overall
bias for fixations to be placed along a lower central horizontal band.

saccade to salient regions. “Salient Region Fixations” was defined as the proportion of all
participant-generated fixations that fell in a given salient region. This measure reflects all
fixations in a salient region regardless of whether the fixation was due to a saccade from
beyond that region or within that region. As control contrasts, random fixations of equal
number to the participants’ were generated by two random models. The first model (pure
random) simply sampled from all possible fixation locations. To control the participants’
bias to fixate in the lower central regions of the scenes (see Figure 2), a second control
contrast (biased random) used randomly generated fixations based on the probability
distribution of fixation locations from the participants’ eye movement behavior across all
the scenes.

Salient Region Entries. The first analysis was carried out by taking the proportion of
saccades that entered a salient region (see Figure 1 for an example). All saccades from
the participant trials and an equal number of saccades from the pure- and biased-random
models were included in the analysis. A higher proportion of salient region entries means
that a greater number of saccades were made into salient regions. If the saliency map
model is able to identify regions that capture attention better than chance, the proportion
of salient region entries made by participants should be higher than the proportion of
salient region entries made by the random models. If the proportion of salient region
entries does not differ between participants and the random models, participants are no
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Figure 3. (a) Mean proportion (with standard error) of all participant-generated saccades that moved from
outside to inside salient regions, compared with those generated by a pure random model and a biased random
model. (b) Mean proportion (with standard error) of all participant-generated fixations that fell within salient
regions, compared with those generated by a pure random model and a biased random model.

more likely to saccade to regions identified by the model than they are by chance. As
can be seen in Figure 3a, although the saliency map model predicted entries better than
did a pure random model, t�34� = 3�64� p < 0�001, it did not predict entries better than
a biased-random model that took into account participants’ general tendency to fixate
the lower and central regions of all scenes, t�34�<1. Contrary to the visual saliency
hypothesis, participants’ tendency to move their eyes to specific scene regions was not
accounted for by the saliency model.
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Salient Region Fixations. The second analysis was carried out by taking the proportion
of all fixations that landed in a salient region (see Figure 1 for an example). All fixations
from the participant trials and an equal number of fixations from the two random models
were included in the analysis. Once again, if participants were to have a higher proportion
of salient region fixations than the random model, this would suggest that the model
is finding regions that capture attention better than chance. On the other hand, if the
proportion of salient region fixations does not differ between participants and the random
models, this would suggest that the model is finding regions that are no more likely
to be fixated than by chance. Observers fixated salient regions identified by the model
more often predicted by the pure-random model, t�34� = 6�81� p < 0�001, and the biased-
random model, t�34� = 4�02� p < 0�001, indicating that the saliency model predicted the
number of fixations in salient regions more accurately than models based on chance (see
Figure 3b).

Summary. The Salient Region Entries analysis demonstrates that viewers were no more
likely to saccade to a salient scene region (as identified by the saliency map model) than
they were by chance. On the other hand, the Salient Region Fixations analysis shows that
viewers fixated salient regions more often than would be expected by chance. Together,
these data suggest that although the eyes are not specifically attracted to salient regions,
they do tend to stick to them once there. The latter result might be taken as at least partial
support for the saliency control hypothesis. However, because this hypothesis is supposed
to account for the movement of the eyes through a scene rather than the tendency to
dwell in a given region, the support is weak. Furthermore, as detailed below, the latter
result is also consistent with the possibility that saliency is correlated with “object-ness”,
and that viewers tend to gaze at objects.

3.2. Do Human Fixations Correspond with Model-Generated Fixation Predictions?

In addition to generating a map of salient scene regions, the saliency model also produces
a set of fixations. Therefore, a second way to test the ability of the model to predict human
fixations is to compare directly the human- and model-generated fixation locations. We
quantified the distance between these fixation locations in two ways, one based on a
similarity metric devised by Mannan, Ruddock, & Wooding (1995) and a second using
the one that we developed as an extension of this metric.

Mannan, Ruddock, & Wooding (1995) Similarity Metric. The fixation location similarity
metric introduced by Mannan et al. (1995) compares the spatial proximity of fixations
derived from two unique fixation sets (e.g. model generated and observer generated). The
location similarity metric compares the linear distance from one set of fixation locations to
the closest fixation in the other set, and vice versa. A high score indicates high similarity.
As a control, we also computed the same similarity metric for all pairwise comparisons
among participants. If the saliency map model is able to predict the locations of human
fixations, its similarity to human observers should be comparable to the similarity of one
human viewer to another.
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The index of similarity (Is) introduced by Mannan et al. is based on the squared
distances between corresponding fixations in two gaze patterns (Dm and Dmr) and is
defined in the following manner:

Is = 100
[

1− Dm

Dmr

]
� (1)

with

Dm
2 =

n1

n2∑
j=1

d2
2j +n2

n1∑
i=1

d2
1i

2n1n2�w
2 +h2�

� (2)

where n1 and n2 are the number of fixations in the two gaze patterns, d1i is the distance
between the ith fixation in the first gaze pattern and its nearest neighbor fixation in
the second gaze pattern, d2j is the distance between the jth fixation in the second gaze
pattern and its nearest neighbor fixation in the first gaze pattern, and w and h are the
width and height of the image of the scene. The calculation of Dmr is the same as Dm

but with randomly generated gaze patterns of the same size being compared. Similar to
a correlation, identical gaze patterns produce an Is score of 100, random gaze patterns
produce an Is score of 0, and systematically different gaze patterns generate a negative
score (Mannan et al., 1995). For our analysis, we examined the first seven fixations each
participant produced when viewing each scene and compared them against the first seven
fixations produced by the saliency model.

Figure 4a shows the mean similarity score Is for each participant against all other
participants (left bar) and all participants against the model (right bar). As can be seen in
the figure, the participants’ fixations were significantly less similar to those generated by
the saliency model than they were to each other, t�35� = 7�87� p < 0�001.

A Unique Assignment Variant of the Mannan et al. (1995) Metric. A potential concern
with the Mannan et al. (1995) similarity metric is that it does not take into account the
overall spatial variability in the distribution of fixations over an image. For example, if
all of the fixations in Set 1 are clustered in one small region of a scene, and there is at
least one fixation in that same region in comparison Set 2, all the Set 1 fixations will
be compared against that single Set 2 fixation. Another way to compute similarity in the
same spirit as the Mannan et al. method that corrects for this issue is to require that each
fixation in each set be assigned to a unique fixation in the other set. A metric can then
be computed based on the distance of each point in Set 1 to its assigned point in Set 2.
Intuitively, this unique-assignment metric better takes into account the overall spatial
distributions of fixations. (Unlike the Mannan et al. analysis, this method requires that
there be an identical number of fixations in each set.) In our unique-assignment analysis,
all possible assignments of each fixation in Set 1 to a unique fixation in Set 2 were
examined to find the single assignment that produced the smallest average deviation.
This assignment was then used to compute the similarity metric, which is the squared
deviation of each fixation point in Set 1 to its mate in Set 2.
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Figure 4. Similarity of participant fixation locations to model-generated locations (left bars) and to each other
(right bars) for the Mannan et al. Index of Similarity (a), our Unique-Assignment “Warping” similarity index (b),
and the Levenshtein Distance metric for sequence similarity (c).
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More precisely, unique-assignment distance (Ws� between two gaze patterns (Dm and
Dmr) was defined as:

Ws = 100
[

1− Dw

Dwr

]
� (3)

with

Dw = 1
n

n∑
j=1

p2
j � (4)

where n is the number of fixations in the gaze patterns, pj is the distance between the jth
unique pair of one fixation from the first set and one fixation from the second set. The
calculation of Dwr is the same as Dw except that randomly generated gaze patterns of the
same size are compared. Identical gaze patterns produce a Ws score of 100, random gaze
patterns produce a Ws score of 0, and systematically different patterns generate negative
scores.

Again, as a contrast, we also computed the unique-assignment similarity metric for all
participants against all other participants. If the saliency model is able to predict human
fixations, its similarity to human observers should be comparable to the similarity for
all pairwise comparisons of participants. As above, we restricted the analysis to the first
seven fixations each participant produced when viewing each scene and the first seven
fixations produced by the saliency model.

Figure 4b shows the mean similarity score Ws for each participant against all other
participants (left bar) and for all participants against the model (right bar). As can be seen
in the figure, as with the first similarity metric, the fixations generated by the saliency
model were significantly less similar to those of the participants than were those of the
participants to each other, t�35� = 5�27� p < 0�001.

3.3. Are Human Fixation Sequences Predicted by Model Fixation Sequences?

Both the original Mannan et al. (1995) similarity metric and our unique-assignment
variant of it ignore information about fixation sequence. In the case of the Mannan
et al. (1995) metric, there is no requirement that fixations be assigned in a one-to-one
correspondence across sets, and in the unique-assignment variant, the correspondence is
based purely on spatial proximity and so does not take into account the temporal order in
which the fixations were produced. It could be that the saliency model does a better job
of predicting fixation order (scan pattern) than it does the exact locations of fixations. To
investigate this possibility, we computed the Levenshtein Distance, a similarity metric
specifically designed to capture sequence. The analysis uses a set of basic transformations
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to determine the minimum number of steps (character insertion, deletion, and substitution)
that would be required to transform one character string into another. This general method
is used in a variety of situations including protein sequencing in genetics (Levenshtein,
1966; Sankhoff & Kruskal, 1983). To conduct the analysis, we divided each scene into a
grid of 48 regions of about 2� by 2� each. This division allowed some noise in fixation
location so that minor deviations from the model would not disadvantage it. Each of
the 48 regions was assigned a unique symbol. Each fixation was coded with the symbol
assigned to the region in which it fell. We again analyzed the first seven fixations, so
each fixation sequence produced a 7-character string. The similarity metric between two
strings was the number of steps required to transform one string into another. Identical
strings generated a value of 0, and the maximum value was 7. As in the first two analyses,
we computed the similarity of each subject’s fixation sequence for each scene to the
sequence generated for that scene by the model. Again, as a control, we also computed
the string metric for all participants against all other participants for each scene. If the
saliency model is able to predict human fixations, its similarity to human observers should
be comparable to the similarity of the human participants to each other. Figure 4c shows
the mean distance score for each participant against all other participants (left bar) and
for all participants against the model (right bar). The fixation sequences generated by the
saliency model were significantly less similar to those of the participants than were those
of the participants to each other, t�35� = 10�2� p < 0�001.

3.4. Saliency Map Model Comparison Summary

In a first set of analyses, we tested the ability of an implemented saliency map
model to predict human fixation locations during an active viewing task. Overall,
the results suggested that the model does not do a particularly good job. Human
fixations did not land in regions of a scene that the model considered to be visu-
ally salient, and the similarity of the participants’ fixations to each other was much
greater than the similarity of the participants’ fixations to model-generated fixations.
Of course, the ability of a given model to predict human performance is a func-
tion both of those aspects of the model that are theory-inspired and other incidental
modeling decisions required for the implementation. One could argue that the spirit
of the model is correct, but not the implementation. Similarly, one might argue that
the implementation is correct, but not the specific parameter choices. However, it
is important to remember that this version of the model has been reported to pre-
dict human fixation locations reasonably well under other conditions (Parkhurst et al.,
2002; Parkhurst & Neibur, 2003, 2004). The model seems to do a particularly good
job with meaningless patterns (such as fractals) and in relatively unstructured view-
ing tasks. In this context, the present results can be taken to suggest that whereas
visual salience (as instantiated in the Itti and Koch saliency map model) does a rea-
sonable job of accounting for fixation locations under some circumstances, it does a
poor job when the viewing task involves active search and the image is a real-world
scene.
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4. Analysis 2: Measuring local image statistics at fixated locations

Several studies have demonstrated that the image properties of fixated regions tend to
differ in systematic ways from regions that are not fixated (Krieger et al., 2000; Mannan,
et al., 1995, 1996; Mannan, Ruddock, & Wooding, 1997a; Parkhurst & Niebur, 2003;
Reinagel & Zador, 1999). Specifically, fixated scene regions tend to be lower in intensity
but higher in edge density and local contrast, and are more likely to contain third-order
spatial relationships such as T-junctions and curves, than non-fixated regions. These
results have been taken to suggest that such regions act as “targets” for fixations. Do
these results generalize to an active visual task with real-world scenes?

4.1. Scene Statistics Method

In the present study, we measured the local image statistics associated with the fixations
generated by our viewers, and compared those values to the values associated with
randomly selected scene locations (see Parkhurst et al., 2002). For each scene image,
ensembles of image patches were created. These patches had a radius of 1� of visual angle,
approximating the spatial extent of foveal vision. Three different types of ensembles were
created. In the subject ensemble, patches were defined by the subject-selected fixation
positions within each image. That is, the center of each patch was defined by the (x, y�
coordinates of each fixation. Thus, the subject ensemble was completely constrained by
subject behavior. In the random ensemble, patches were centered on randomly selected
positions within each scene. Thus, the patches in the random ensemble were completely
unconstrained and every point in the image was equally likely to be selected. In the
shuffled ensemble, patches were derived by “shuffling” subject-selected fixation locations
from one image onto a different, randomly selected image. Like the biased random control
condition in Analysis 1, this shuffled ensemble was used to account for the participants’
bias to fixate more centrally in an image (see Parkhurst & Niebur, 2003).

For each ensemble, several measures of local image statistics were calculated. Anal-
yses then focused on evaluating the similarity of the image statistics within each type
of ensemble. Image statistics within the subject ensemble are characteristic of those
image properties that are fixated. Since it is a random sampling, image statistics within
the random ensemble are characteristic of the image properties in the scenes overall.
Image statistics within the shuffled ensemble are characteristic of the image properties in
those scene regions that tend to be fixated across scenes, such as the lower scene center
(see Figure 2). The degree to which the scene statistics of the subject ensembles differ
from the random and shuffled ensembles indicates the extent to which fixation location
is correlated with particular image statistics.

Three common measures of local image statistics were examined: intensity, contrast, and
edge density. These image statistics characterize different properties of image luminance.
The luminance of each scene was extracted by converting the scene’s RGB values to the CIE
L∗a∗b∗ colorspace (Oliva & Schyns, 2000) which separates the luminance information of an
image into a distinct dimension (L∗�. The chromatic information in the a∗ and b∗ dimensions
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was discarded, and analyses focused on the values in the L∗ dimension. Intensity was
defined as the average luminance value of the pixels within a patch (see Mannan et al.,
1995). Greater intensity is associated with higher luminance, or a higher degree of
subjectively perceived brightness. Local contrast was defined as the standard deviation
of luminance within a patch (see Parkhurst & Niebur, 2003; Reinagel & Zador, 1999).
Local contrast, then, is a measure of how much the luminance values of pixels within
a patch vary from each other. More uniform patches have less contrast. Edge density
was defined as the proportion of edge pixels within an image patch. Edge pixels were
found by filtering the scenes with a Sobel operator that responds to contours in scenes
represented by steep gradients in luminance (see Mannan et al., 1995, 1996). Greater
edge density is associated with image patches containing a greater number of contours.

Results. Representative patches from the subject, shuffled, and random ensembles are
depicted in Figure 5. Quantitative analyses of the local image statistics available in
patches from each ensemble are summarized in Figure 6. For all analyses, the local image

Patch exemplars
Subject ensemble

Shuffled ensemble

Random ensemble

Figure 5. Representative patches from the subject ensembles (determined by participant fixation locations) and
for the shuffled and random ensembles used as control conditions. Originals were presented in color.
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ensembles.
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statistics observed at fixation (the subject ensemble) were tested against the random and
shuffled ensembles using one-sample t-tests.

Consistent with the prior findings in the literature cited earlier, patches derived from
the subject ensembles were reliably different from those from the shuffled and random
ensembles for all three local image statistics. Intensity within the subject ensemble patches
was 6% lower than that within the shuffled patches (t�284� = −3�88� p < 0�001), and
8% lower than that in the random patches (t�284� = −6�55� p < 0�001). Local contrast
within the subject ensemble patches was 14% higher than that within the shuffled patches
(t�284� = 6�72� p < 0�001) and 9% higher than that in the random patches (t�284� =
7�59� p < 0�001). Edge density within the subject ensemble patches was 19% higher than
that within the shuffled patches (t�284� = 8�03� p < 0�001), and 29% higher than that in
the random patches (t�284� = 15�5� p < 0�001).

Summary. Replicating prior results, observers fixated regions that were lower in inten-
sity and higher in local contrast and edge density than either control regions selected
randomly or based on fixations from another image. On the face of it, these data could be
taken to suggest that regions marked by differences in local image properties compared
to the remainder of the scene act as “targets” for fixation, irrespective of the semantic
nature of the information contained in those regions (Parkhurst et al., 2002; Parkhurst &
Neibur, 2003). However, because these analyses only establish a correlation between
fixation locations and image properties, it is also possible that the relationship is due to
other factors. In the following section we explore the hypothesis that region meaning
is such a factor. Specifically, we measured the semantic informativeness of the subject,
shuffled, and random ensembles to determine whether meaning was also correlated with
fixation location.

5. Analysis 3: Are fixated scene regions more semantically informative?

The purpose of this analysis was to determine whether fixated regions that have been
shown to differ from non-fixated regions in intensity, contrast, and edge density, also
differ in semantic informativeness. To investigate this question, an independent group
of observers rated the degree to which patches from each ensemble were semantically
informative (Antes, 1974; Mackworth & Morandi, 1967).

One hundred patches were selected from each of the subject, shuffled, and random
ensembles generated from the scene statistics analysis reported above. These patches
met two constraints. First, patches had to be representative of their ensemble supersets
(subject, shuffled, random) in terms of local image statistics (as determined above) so
that the reliable statistical differences observed would be preserved. Second, a minimum
distance of 2� of visual angle was established between the center points of any two patches
originating from the same scene so that selected patches could not spatially overlap.
Within these constraints, patches were chosen randomly. Patches from all scenes and
subjects were represented in the final subset used in Analysis 3.
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Figure 7. Mean semantic informativeness ratings (with standard errors) for the subject, shuffled, and random
ensembles.

Seven Michigan State University undergraduates viewed all 300 selected patches on
a computer monitor. Stimuli for presentation were created by placing each patch in the
center of a uniform gray background that subtended 16� horizontally and 12� vertically.
Each individual patch subtended 2� horizontally and vertically. Presentation order of
patches was randomly determined. Using a 7-point Likert-type scale, observers were
instructed to rate how well they thought they could determine the overall content of the
scene from the small view they were shown.

Results. Mean ratings for each patch type are illustrated in Figure 7. Patches from the
subject, shuffled, and random ensembles received mean ratings of 4.65, 4.25, and 4.11,
respectively. A one-way repeated-measures ANOVA demonstrated a reliable effect of
patch type, F�2� 12� = 19�4�p < 0�001, with all pairwise comparisons reliable. Critically,
patches from the subject ensemble were judged to be more informative of scene identity
than those from the shuffled and random ensembles. This analysis demonstrates that
observers in the eyetracking experiment fixated scene regions that were more likely to
provide meaningful information about the scene. These results challenge the hypothesis
that local scene statistics and semantic informativeness are independent.

Summary. Image statistics of areas selected for eye fixation within scenes differ in
systematic ways from areas that are not fixated. A possible interpretation of these results
is that fixation position can be accounted for by low-level image statistics (Krieger et al.,
2000; Mannan et al., 1995, 1996, 1997a; Parkhust & Niebur, 2003; Reinagel & Zador,
1999). The present results, however, call this interpretation into question. We conclude
that examining the relationship between image statistics and fixation location without
also measuring the semantic content of fixated regions can provide a partial or even
misleading characterization of bottom-up influences on gaze control. Though it is possible
that image properties in a scene directly influence gaze control, the results from scene
statistics analyses cannot be taken as strong support for it.
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6. General discussion

Gaze control during scene perception is critical for timely acquisition of task-relevant
visual information. In this study, we tested the hypothesis that the selection of locations
for fixation during complex scene viewing is primarily driven by visual salience derived
from a bottom-up analysis of image properties. To test this visual saliency hypothesis,
we collected eye movement data from participants who viewed full-color photographs of
real-world scenes during an active visual search task. We then analyzed the eye movement
data in a variety of ways to test the visual saliency hypothesis. In an initial set of analyses,
we compared the fixation data against the predictions generated from what is arguably
the standard among computational visual saliency models. We found that visual salience,
as instantiated by the model, did a poor job of predicting either fixation locations or
sequences. In a second set of analyses, we examined whether image properties differ
at fixated and non-fixated locations. Consistent with other reports in the literature, we
found clear differences in intensity, contrast, and edge density at fixated scene regions
compared to regions that were not fixated. However, in a third analysis, we showed that
fixated regions also differ in rated meaning compared to regions not fixated. Therefore,
any observed correlations between fixation locations and image statistics could be due to
the informativeness of fixated locations rather than to differences in the image statistics
themselves. Our conclusion is that the evidence supporting the visual saliency hypothesis
is weak, and that the existing evidence is consistent with the hypothesis that cognitive
factors play the dominant role in gaze control.

6.1. Visual saliency or cognitive control?

To what extent is there strong evidence that gaze is primarily controlled by visual salience?
As we have shown, the main sources of evidence, correlation of fixation positions with
model-determined visual saliency, and differences in scene statistics at fixated and non-
fixated locations, are both problematic. In the case of correlations with saliency model
output, there is very little evidence that for active viewing tasks in the real world, existing
saliency models do a good job of predicting fixation locations (Turano et al., 2003). In
the present study, we showed that an existing saliency model also does a poor job of
predicting fixation locations during active visual search in static images.

In the case of analyses showing that image statistics differ at fixated and non-fixated
locations, our results suggest that previously reported effects may just as well be due
to differences in region meaning as to differences in the image statistics themselves.
This confound is probably unavoidable: meaningful objects differ from scene back-
ground in their image properties. The important conclusion is that showing differences
in image properties at fixated and non-fixated regions cannot be used as unambiguous
support for the hypothesis that those properties are driving eye movements. It is at least
as likely that the meaning of an image region is responsible for the fact that it was
fixated.
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The few prior attempts to investigate a causal link between image statistics and fixa-
tion point selection have produced mixed results. Mannan and colleagues (1995, 1996)
demonstrated that fixation locations in normal and low-pass filtered scenes are similar
over the first 1.5 s of viewing. Because the objects in many of the low-pass filtered
scenes were not identifiable, these data suggest that human gaze control does not initially
select fixation sites based on object identity information. However, Einhauser and König
(2003) demonstrated that perceptually detectable modifications to contrast have no effect
on fixation point selection, suggesting that contrast does not contribute causally to fix-
ation point selection, though this study has been criticized on methodological grounds
(Parkhurst & Niebur, 2004). Nevertheless, Einhauser and König (2003) concluded that
top-down, rather than bottom-up, factors determined attentional allocation in natural
scenes.

Given that local image statistics associated with semantically informative regions such
as objects undoubtedly differ systematically from those of backgrounds, and given our
demonstration that such relationships exist for fixated scene regions, the results obtained
by investigations linking local image statistics and gaze are entirely consistent with the
conclusion that cognitive factors guide eye movements through scenes.

6.2. The special case of sudden onsets

Are there any conditions in which stimulus-based factors have priority over cognitive
factors in controlling fixation location during scene viewing? We know of only one
definitive case: The top-down direction of the eyes can be disrupted by the abrupt
appearance of a new but task-irrelevant object, a phenomenon called oculomotor capture
(Irwin, Colcombe, Kramer, & Hahn, 2000; Theeuwes, Kramer, Hahn, & Irwin, 1998).
We have recently found that during real-world scene viewing, the transient motion signal
that accompanies an abruptly appearing new object attracts attention and gaze quickly
and reliably: up to 60% of fixations immediately following the onset are located on the
new object (Brockmole & Henderson, 2005a, 2005b). This effect is just as strong when
the new object is unexpected as when the observer’s goal is to search for and identify new
objects, suggesting that the allocation of attention to transient onsets is automatic. Thus,
visually salient scene regions marked by low-level transient motion signals introduced
by sudden changes to a scene can influence gaze in a manner divorced from cognitive
control.

6.3. How should stimulus-based and knowledge-based information be combined?

The fact that gaze control draws on stored knowledge implies that image properties about
potential fixation targets must somehow be combined with top-down constraints. How
is this accomplished? One approach is to construct the initial stimulus-based saliency
map taking relevant knowledge (e.g., visual properties of a search target) into account
from the outset (Findlay & Walker, 1999; Rao, Zelinsky, Hayhoe, & Ballard, 2002).
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A second approach is to combine independently computed stimulus-based and knowledge-
based saliency maps so that only salient locations within knowledge-relevant regions are
considered for fixation. For example, Oliva, Torralba, Castelhano, & Henderson (2003)
filtered an image-based saliency map using a separate knowledge-based map of scene
regions likely to contain a specific target. A yet more radical suggestion would be to
move away from the concept of an image-based saliency map altogether, and to place
primary emphasis on knowledge-based control. For example, in what we might call a
Full Cognitive Control model, objects would be selected for fixation primarily based on
the types of knowledge discussed in the Introduction, such as episodic and schema-based
scene knowledge. The visual image in this type of model would still need to be parsed to
provide potential saccade targets, but unlike the assumption of the salience hypothesis,
the objects and regions would not be ranked according to their inherent visual saliency,
but rather would be ranked based on criteria generated from the cognitive knowledge
base. For example, if I am searching for the time of the day, and I know I have a clock
on the wall in my office, I would rank non-uniform regions in the known location on
the wall highly as a saccade target. In this view, visual saliency itself would play no
direct role in saccade location selection. Image properties would only be directly relevant
to the extent that they support processes needed to segregate potential targets from
background. (And of course they would be necessary as input for determining that I’m in
my office, how I’m oriented in my office, where the wall is, and so on.) We call this idea
that inherent visual saliency plays no role the Flat Landscape Assumption and contrast
it with the differentially peaked visual saliency landscapes assumed by the saliency
hypothesis.

7. Conclusion

What drives eye movements through real-world scenes during active viewing tasks?
Despite the recent popularity of the visual saliency hypothesis as an explanation of gaze
control, the evidence supporting it is relatively weak. Cognitive factors are a critical and
likely dominant determinant of fixation locations in the active viewing of scenes.
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