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Perceptual categorization at the basic level is generally faster than categorization at more superordinate
or subordinate level [Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic
objects in natural categories. Cognitive Psychology, 8(3), 382-439]. But, what does it mean to be fastest?
One possibility is that levels of abstraction that are categorized fastest are processed first. In this vein, the
basic level is often considered the “entry level” into our knowledge about categories in the world [Jolic-
oeur, P., Gluck, M. A., & Kosslyn, S. M. (1984). Pictures and names: Making the connection. Cognitive Psy-
chology, 16(2), 243-275]. We tested this “fastest means first” hypothesis by contrasting the time course of
basic- and subordinate-level categorization of objects in a signal-to-respond experiment. This method
probes subjects to respond at systematically varying points in time after the onset of the object. The time
course function relating performance to time is characterized by its onset, growth rate, and asymptote.
While basic and subordinate categorization differed significantly in growth rate and asymptote, they
did not differ significantly in onset. If a basic-level stage preceded a subordinate-level stage, we should
have observed a difference in onset. We conclude that fastest does not necessarily mean first in percep-
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tual categorization.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The human visual system allows us to rapidly and accurately
recognize objects in the world (Thorpe, Fize, & Marlot, 1996). At
a glance, we can detect that an object is there, categorize it as a
bird, or identify it as blue jay. An important and long-standing
question about object processing is when these different levels of
abstraction become available to the perceiver. Some of these per-
ceptual decisions are made more quickly than others (Rosch, Mer-
vis, Gray, Johnson, & Boyes-Braem, 1976). But does fastest mean
first? Do certain perceptual decisions start earlier than others dur-
ing visual object recognition (Grill Spector & Kanwisher, 2005;
Mack, Gauthier, Sadr, & Palmeri, 2008; Palmeri, Wong, & Gauthier,
2004)?

Rosch et al. (1976) found that participants were faster at verify-
ing that objects matched labels at the so-called basic level (e.g.,
dog) than more superordinate (e.g., animal) or subordinate (e.g.,
beagle) levels of abstraction. The fastest level of categorization
was later termed the entry level by Jolicoeur, Gluck, and Kosslyn
(1984) to acknowledge that the level at which perceptual informa-
tion makes first contact with a stored visual representation. For
many category members, “basic-level [categorization] occurs first
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and is followed, some time later, by subordinate-level identifica-
tion” (Jolicoeur et al., 1984, p. 270). Rosch et al. (1976) argued that
the advantage for the basic level arises because the basic level is
the level at which objects show the largest gain in structural sim-
ilarity independent of the perceiver; representations of basic-level
categories follow the natural correlations and divisions of features
found in objects and, as a consequence, are available first during
recognition. Various factors can influence which level is fastest.
For example, atypical category members that are structurally dis-
similar to their subordinate counterparts can be categorized faster
at subordinate levels than the basic level (Jolicoeur et al., 1984;
Murphy & Brownell, 1985). Furthermore, for objects of perceptual
expertise (Tanaka & Taylor, 1991), subordinate-level identification
occurs as quickly and as accurately as basic-level categorization.'
This has been characterized as an entry-level shift with expertise:
For novice categories, the basic level is the entry level, but for expert
categories, more subordinate levels become the entry level (but see
Johnson & Mervis, 1997).

But what does it mean for a particular level of abstraction to be
the “entry level”? One straightforward possibility is illustrated in
Fig. 1. In this simple box-and-arrow model, objects from novice

! For clarity and ease of prose, we often use the terms basic-level categorization and
subordinate-level identification in this paper. In this sense of the terms, both
“categorization” and “identification” are categorizations, albeit at different levels of
abstraction.
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Fig. 1. One possible descriptive model of basic-level advantage (top) and entry-level shift (bottom). Speed-accuracy tradeoff functions show the (exaggerated) hypothetical
time course of processing associated with novice and experiment categories according to such a model.

categories, after low-level visual processing, are categorized first at
the basic level (the entry level) before being categorized at more
subordinate (or superordinate) levels. Basic-level categorization
is faster than subordinate-level identification because basic-level
categorization occurs before subordinate-level identification begins
- fastest means first. But for objects from expert categories or atyp-
ical objects, there is an entry level shift: Objects are categorized at
subordinate levels of abstraction without first being categorized at
the basic level. As illustrated in Fig. 1, by this account learning
about expert categories and atypical objects creates special-pur-
pose machinery for rapidly recognizing subordinate categories that
bypasses an initial basic-level stage of processing.

Characterizing stages of visual processing with levels of catego-
rization has obtained some currency in visual cognition and visual
neuroscience. For example, Grill Spector and Kanwisher (2005)
contrasted the time course of object detection, basic-level catego-
rization, and subordinate-level identification and observed the
very same rapid time course for detection and categorization com-
pared to identification. These results suggest an early stage of im-
age segmentation that both detects that an object is there and tells
you what basic-level category the object belongs to. Subordinate-
level identification takes place in a subsequent stage of processing.

However, many extant computational models of object recogni-
tion and categorization propose no such preliminary basic-level
stage. Instead, basic-level categorization and subordinate-level
identification are perceptual decisions at the end of the line of pro-
cessing, not sequential stages of visual processing. For example,
exemplar-based models of categorization (Kruschke, 1992; Nosof-
sky, 1992) can account for both categorization and identification
performance. In broad strokes, these models assume some initial
stage of perceptual processing that provides the perceptual repre-
sentation of an object. This perceptual representation activates
stored exemplars in memory according to their similarity to the
presented object, with perceptual dimensions more diagnostic of
category or identity contributing more to similarity than non-diag-
nostic dimensions. Stored exemplars are associated with basic-le-
vel categories or subordinate-level identities through weights
learned by Hebbian or error-driven learning rules (depending on
the particular model). A stochastic random walk decision process
at this final decision stage accounts for both errors and variability
in response time (Nosofsky & Palmeri, 1997; Palmeri, 1997). In the

parlance of neural network models, decisions about both category
and identity are made within the final output layer, not in earlier
layers (Nosofsky & Kruschke, 1992).

A similar hierarchy of information processing is seen in other
models. One neural network model of object recognition (Joyce &
Cottrell, 2004) assumes that an object goes through stages of Gabor
filtering, principal component analysis (PCA), and a neural network
mapping PCA representations onto category labels. Decisions about
basic-level category or subordinate-level identity are driven by
trained weights leading to units at the same final output layer of
the neural network. Similarly, another neural network model of
object recognition (Riesenhuber & Poggio, 2000) assumes a hierar-
chy of information processing that begins with low-level features,
moves on to view-based representations, object representations,
and ultimately to labels for category and identity. Like the other
models, perceptual decisions at different levels of abstractions
are instantiated at the same output layer of the network. Critically,
none of the current models postulate an explicit basic-level stage
of processing that precedes the subordinate and superordinate
stages. A basic-level advantage arises in many models because of
the greater level of structural similarity among basic-level category
members and the greater dissimilarity to other categories. If there
is truly a basic-level stage of processing — as suggested by some
interpretations of entry-level phenomena - then this would chal-
lenge many current computational models of perceptual categori-
zation and object recognition.

We attempted to unravel the time course of basic-level catego-
rization and subordinate-level identification. Is basic-level catego-
rization a stage prior to subordinate-level identification? If so, then
most models are wrong.

Specifically, we asked whether the onset of processing for basic-
level categorization occurs before the onset of processing for subor-
dinate-level identification. Our first experiment verified that basic-
level categorization is significantly faster than subordinate-level
categorization for typical members of novice categories; by con-
trast, atypical members should be categorized as fast at subordi-
nate and basic levels. We then asked if fastest might also mean
first. The second experiment used a signal-to-respond (STR) tech-
nique to examine the time course of basic-level categorization
and subordinate-level identification. STR probes perceptual deci-
sions at various time points after the stimulus appears. Of particu-
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lar interest are potential temporal markers for understanding the
source of the basic-level advantage. If subordinate-level identifica-
tion of novice categories is performed by a stage of processing that
begins only after basic-level categorization finishes (as illustrated
in top part of Fig. 1), then we should find a delay in the initial onset
of subordinate-level decisions relative to basic-level decisions over
time.

In addition to testing participants on novice categories of ob-
jects, we also tested participants on faces. Faces provide an inter-
esting contrast category for two reasons. First, there have been
explicit suggestions that an initial stage of processing categorizes
a stimulus as a face prior to a stage that identifies the unique indi-
vidual. This suggestion has been supported by time course mea-
sures using EEG (e.g., Anaki, Zio-Golumbic, & Bentin, 2007) and
MEG (Liu, Harris, & Kanwisher, 2002). So perhaps faces are like
common objects from novice categories. They are categorized at
the basic level as a person. Then in a subsequent stage of process-
ing they are identified uniquely. If that were true, then like novice
categories, during the STR task we might expect a significant differ-
ence in the onset of processing for basic-level categorization and
subordinate-level identification of faces.

Second, others have suggested that normally-functioning adults
can be considered face experts (Carey, 1992; Carey & Diamond,
1994; Diamond & Carey, 1986; Gauthier & Tarr, 1997; Tanaka,
2001), though whether face expertise is qualitatively different
from other forms of perceptual expertise is hotly debated (Bukach,
Gauthier, & Tarr, 2006; McKone, Kanwisher, & Duchaine, 2007). It
is true, however, that faces show qualitatively the same entry-level
shift as other categories of expertise. Specifically, pictures of highly
familiar faces are identified as quickly as unique individuals as
they are categorized as people (Tanaka, 2001), much in the same
way that for bird experts, pictures of birds are identified as quickly
at a subordinate level as they are categorized as birds (Tanaka &
Taylor, 1991). By this alternative account, during the STR task
we might expect no difference in the onset of processing for ba-
sic-level categorization and subordinate-level identification for
faces.

2. Experiment 1
2.1. Methods

2.1.1. Participants
Fifteen Vanderbilt University undergraduates participated in
two 1 h sessions for course credit or monetary compensation.

2.1.2. Stimuli

Images of objects from three categories (faces, dogs, and birds)
were used. Each category consisted of about 320 images from eight
different subordinate-level categories: faces - Arnold Schwarze-
negger, Jennifer Aniston, Britney Spears, Nicole Kidman, George
W. Bush, Mel Gibson, Hillary Clinton, Bill Clinton; dogs - sharpei,
beagle, chihuahua, chow chow, golden retriever, german shepherd,
weimaraner, poodle; birds - robin, dove, crow, hawk, duck, pen-
guin, ostrich, owl. Two of the dogs (chihuahua and poodle) and
two of the birds (penguin and ostrich) are atypical members of
the category as defined in previous work (Jolicoeur et al., 1984;
Rosch et al., 1976), the rest of the dogs and birds are typical. Images
were presented in grayscale and subtended approximately
5.2° x 5.2° of visual angle.

2.1.3. Procedure

Participants were seated approximately 60 cm from the com-
puter display and performed a speeded category verification task.
Each trial began with a basic- or subordinate-level category label

displayed for 1000ms, followed immediately by the test image.
The test image remained on the screen until the participant re-
sponded. Participants responded by hitting a “yes” key if the label
matched the object shown in the test image, and a “no” key if it did
not. Half of the category verifications were made at the basic level
(face, dog, or bird), and half were made at the subordinate level
(Jennifer Aniston, beagle, robin, etc.). On true trials, the category la-
bel and the object in the test image matched. On false basic-level
trials, another basic-level category was shown (e.g., a label BIRD
for the image of a german shepard). On false subordinate-level tri-
als, another category label from the same basic-level category was
displayed (e.g., a label BEAGLE for the image of a german shep-
herd); for faces, the label on false trials was a person of the same
gender as the one depicted in the image. Participants were in-
structed to respond as quickly and accurately as possible. Before
the experimental trials began participants completed a short prac-
tice session; the practice stimuli were drawn from other basic-le-
vel categories. Each session consisted of 960 trials and lasted
approximately 1 h.

2.2. Results and discussion

Verification response times and accuracy on true trials from
each of the object categories are shown in Fig. 2. A basic-level
advantage was found for birds and dogs, replicating Tanaka and
Taylor (1991), but not faces, replicating Tanaka (2001). Both the re-
sponse time and accuracy data were subjected to a within-subjects
domain (dog, bird, and face) x level (basic, subordinate) ANOVA.
Overall, responses were faster (F(2,28)=23.4, MSE=2571,
p<0.001) and more accurate (F(2,28)=4.48, MSE =0.00024,
p <0.05) for faces than dogs or birds, and responses were faster
(F(1,14)=23.3, MSE=2330, p<0.001) and more accurate
(F(1,14) =17.29, MSE = 0.00066, p < 0.01) for basic-level than sub-
ordinate-level verifications. Critically, significant domain x level
interactions were observed for both response time
(F(2,28)=17.69, MSE = 1120, p<0.01) and accuracy
(F(2,28)=8.91, MSE=0.00029, p<0.01). Planned comparisons
were conducted on the difference between the basic- and subordi-
nate-level verifications for each domain. For both birds and dogs,
responses were faster and more accurate for basic than subordi-
nate verifications [birds - RT t(14)=4.01, p<0.01, accuracy
t(14)=3.93, p<0.01; dogs - RT t(14)=5.24, p <0.001, accuracy
t(14)=5.04, p<0.001]. For faces, no significant difference was
found for either response time [t(14) = 1.81, p = 0.203] or accuracy
[t(14)< 1.0, p=0.87].

The above analyses included all birds and dogs, regardless of
their typicality. Not surprisingly, when we excluded the atypical
objects from the analyses conducted above, all of statistical con-
trasts were at least as strong (Table 1). We then analyzed the atyp-
ical objects separately (Table 1). For the atypical birds,
subordinate-level categorization was actually significantly faster
than basic-level categorization [t(14) = 2.98, p = 0.01], with no sig-
nificant difference in accuracy [t(14)=1.02, p=0.327]. For the
atypical dogs, basic-level categorization was still significantly faster
than subordinate-level categorization [t(14)=4.19, p = 0.001] with
no significant difference in accuracy [t(14) = 0.82, p = 0.424].

In addition to examining average accuracy and response times,
we also examined the full response time distributions for basic-le-
vel categorization and subordinate-level identification. We were
specifically interested in the fastest tail of the RT distributions. If

2 We also analyzed data for each individual bird and dog separately. In all but two
cases, typical objects were categorized faster at the basic than subordinate levels and
atypical objects were categorized at least as fast at the subordinate level as the basic
level. The only exceptions were owl, which showed response times like atypical
objects, and poodle, which showed response times like typical objects.
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Fig. 2. RT and accuracy for speeded verification in Experiment 1. Gray and white bars represent basic- and subordinate-level performance, respectively. Asterisks (*) represent
significant differences (p < 0.05) between basic- and subordinate-level performance and error bars represent 95% confidence intervals.

Table 1

Average accuracy and RT in Experiment 1 for typical and atypical objects in each
domain. 95% confidence intervals are shown in parentheses as well as significant
differences between basic-level categorization and subordinate-level identification at
p<0.05 (%)

Condition Accuracy RT

Typical

Bird Basic 982 (.951, 1.00)* 572 (539, 605)*
Subordinate 941 (.909. ,972) 647 (614, 680)

Dog Basic .982 (.965, .999)" 563 (532, 595)"
Subordinate 1952 (.935, .968) 613 (581, 645)

Person Basic .969 (.957, .984) 544 (521, 566)
Subordinate .981 (.966, .993 553 (530, 575)

Atypical

Bird Basic .970 (.958, .983) 607 (581, 632)
Subordinate .980 (.967, .992) 568 (543, 594)

Dog Basic .972 (.944, .999) 564 (541,586)"
Subordinate 961 (.933, .989) 608 (565, 630)

there is clear separation between the RT distributions at these fast-
est RTs, such that the fastest basic-level categorizations are faster
than the fastest subordinate-level identifications, this could pro-
vide some converging evidence for a basic-level stage preceding
subordinate-level processing.

To do this comparison, we created Vincentized (Ratcliff, 1979;
Vincent, 1912) RT distributions for basic-level categorization and
subordinate-level identification, as shown in Fig. 3. Vincentizing
is a technique for creating an average RT distribution that pre-
serves the shape of the individual-participant RT distributions; it
is well known that if individual-participant RTs are simply piled to-
gether into a single group-defined RT distribution, then the group
RT distribution can have a very different shape from any of the
individual RT distributions. Vincentizing first creates a cumulative
RT distribution for each individual participant. At each quantile of
the distribution, the RT at that quantile for each individual RT dis-
tribution is averaged together. For Fig. 3, we chose a fine-grained
Vincentizing at each 5% (1% for zoomed figure insets). The shaded
region is a confidence interval on the Vincentized RT distribution
generated with a bootstrapping procedure.? For typical objects,
even though the distributions for basic- and subordinate-level deci-
sions are separated over the bulk of the RT distributions, the separa-
tion for the fastest RTs is less clear. For atypical objects, we see a

3 The confidence interval was generated by creating 5000 Vincentized RT distri-
butions and setting the upper and lower bounds of the confidence interval to the 2.5%
and 97.5% extent of a distribution of distributions. Specifically, we used a bootstrap
procedure whereby on each of the 5000 simulated runs, we created a RT distribution
for each participant by sampling their observed RTs with replacement, and then
created a sample Vincentized RT distribution using the same approach we used for
the actual sample of observed data.

great deal of overlap in the RT distributions over their full extent.
We see a similar degree of overlap in the distributions for faces.

To summarize, for objects from novice categories, verifications
at the basic level were faster and more accurate than those at a
subordinate level. But for faces, there was an “entry-level shift”,
with comparable speed and accuracy at the subordinate level as
the basic level. Comparing RT distributions did not show clear evi-
dence for a difference in onset of correct responses for basic-level
categorization versus subordinate-level identification. We further
explored the time course of categorization and identification in
Experiment 2.

3. Experiment 2

For novice categories, objects are categorized faster at the basic
level than subordinate levels. But are these objects categorized at
the basic level before subordinate identification begins? Does fast-
est mean first?

To answer this question, we contrasted the time course of cat-
egorizing expert and novice objects at basic and subordinate levels
using a signal-to-respond (STR) technique, or also called a response-
signal technique (Corbett & Wickelgren, 1978; Dosher, 1981;
Hintzman, Caulton, & Curran, 1994; Reed, 1973). This task can be
used to unravel the time course of visual object processing by sys-
tematically varying the amount of time a participant is given to
process a test object and measuring how categorization perfor-
mance changes as a function of processing time.

Another common technique for probing the time course of ob-
ject processing involves systematically manipulating the exposure
duration of images (rather than manipulating the time to make an
object decision). This is a useful technique, especially for under-
standing what kinds of perceptual decisions are possible at a
glance. One potential limitation is that, especially for very rapid
exposure durations, it is difficult to disentangle the time-course
of processing per se from the quality of the perceptual representa-
tion being processing. If early visual areas need to temporally inte-
grate sensory information, then very rapidly presented images will
have a degraded sensory representation. By holding exposure
duration constant, we can focus our lens on the time-course of
decisions. For this reason, STR techniques are commonly used
when asking questions about potential stages of processing that
lead to those decisions (e.g., Hintzman & Curran, 1997).

We introduced a STR version of the category verification task,
using the same collection of objects and categories. At systemati-
cally varying lags after the appearance of each image, we presented
a response signal (a tone) that instructed the participant to imme-
diately make a response. Specifically, the participant was in-
structed to respond within a short time window after hearing the
tone.
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Fig. 3. Cumulative distributions of correct true trials in Experiment 1; basic-level categorization (solid line) and subordinate-level identification (dotted line), shaded regions
represent 95% confidence intervals. Insets zoom in on the fastest tail of distributions.

Varying the lag from image appearance to response signal allows
us to examine how category verification performance changes over
time. Fig. 1illustrates the speed-accuracy tradeofffunctions (SATF) that
are typically observed in STR paradigms. These curves can be charac-
terized by their onset, the time at which categorization performance
begins to grow above chance, growth rate, how steeply categorization
performanceincreases withincreasing time,and asymptote, the max-
imum level of categorization performance possible.

Of particular interest to us are differences in onset for basic-le-
vel categorization and subordinate-level identification. As illus-
trated in Fig. 1, if for novice categories the onset of subordinate-
level identification requires completion of a basic-level categoriza-
tion stage, then there should be some window of time where
above-chance performance is possible for basic-level categoriza-
tion but not subordinate-level identification - this would be re-
flected by a significant onset difference in the SATF. Of course,
the illustration in Fig. 1 exaggerates the onset difference we might
expect. But given that there was a 50ms difference between basic-
and subordinate-level decisions for novice categories in Experi-
ment 1, there is a potential opportunity to uncover significant on-
set differences using a STR paradigm. Indeed, it is common to find
significant differences in the onset of speed-accuracy tradeoff func-
tions for a variety of simple decisions that can be made as rapidly
as the categorization decisions under consideration in this article,

from lexicality and memory decisions (e.g., Hintzman & Curran,
1997; Hintzman et al., 1994) to categorization decisions (e.g., Lam-
berts, 2000; Lamberts & Freeman, 1999) to visual perceptual deci-
sions (e.g., Carrasco, McElree, Denisova, & Giordano, 2003).

Now as for faces, the previous research using MEG and EEG sug-
gests that we might expect to find a significant onset difference for
basic-level categorization versus subordinate-level identification
(e.g., Anaki et al., 2007; Liu et al., 2002). On the other hand, Exper-
iment 1 showed no significant difference in category verification at
the basic and subordinate levels, so we might also expect to find no
onset difference whatsoever.

3.1. Methods

3.1.1. Participants
Five of the participants from the first experiment took part in
this experiment and were paid $12 per session.

3.1.2. Stimuli
The same stimuli were used as Experiment 1.

3.1.3. Procedure
Participants completed a category verification task like Experi-
ment 1, but with the inclusion of a signal-to-respond manipula-
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tion. On each trial, a category label was displayed for 1000ms, and
then a premask was displayed for a variable duration, followed by
the presentation of the stimulus image for 200ms, followed by a
postmask. An auditory signal to respond was presented to the par-
ticipants after a variable lag (12, 24, 35, 47, 94, 188, 376, 753, or
1506 ms) from image appearance. Masking was used to limit the
amount of perceptual processing in order to make the task more
difficult than unmasked viewing; note that the same limits from
masking were imposed at all signal-to-respond levels. As in Exper-
iment 1, participants verified the match or mismatch between the
category label (basic or subordinate) and object in the stimulus im-
age, but they could only respond after hearing the auditory signal.
A warning message was presented if the participants responded
before the signal or if the response time after the signal was smal-
ler than 180ms or greater than 350ms. Participants responded by
pressing keys marked as “yes” and “no” on a keyboard. Participants
completed 16 sessions with each session consisting of 864 trials
and lasting approximately 1 h. This resulted in 256 trials for each
lag in every domain (dog, bird, and person) and category label (ba-
sic or subordinate).

3.2. Results

Fig. 4 displays the average observed speed-accuracy tradeoff
functions in terms of discriminability (d’) as a function of process-
ing time for basic- and subordinate-level categorization of typical
and atypical (insets) objects in each of the three object domains.
In order to quantitatively compare the temporal dynamics of
speed-accuracy tradeoff functions, d’ values from individual partic-
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Fig. 4. Speed-accuracy tradeoff functions in Experiment 2; behavioral time course
data (close and open circles) and exponential curve fits (solid and dotted lines) for
typical objects in each domain (atypical objects are shown in the insets).
Performance (d') is plotted along the y-axis and response time plus lag is plotted
along the x-axis.

ipants were fitted with an exponential function widely used to
analyze STR data (Wickelgren & Corbett, 1977)

d = (1 — e ),

where t is the lag until the response signal plus the response time
after the signal (i.e., t=signal lag+ RT), 4 is the asymptote, f is
the growth rate, and ¢ is the onset. The asymptote represents an ex-
pected maximum accuracy for the task given unlimited time; the
growth rate represents the rate at which relevant information is ex-
tracted; the onset represents when performance begins to grow
above chance during the time course of processing. By fitting this
function to each participant’s data, we can statistically compare
the resulting parameters values (/, 8, and §) for basic- and subordi-
nate-level categorization in each domain. If, for example, we find
statistically shorter onsets for the basic than subordinate levels,
then this indicates a delay in initial processing of subordinate-level
categories, perhaps because subordinate-level categorization fol-
lows basic-level categorization.

After fitting the exponential function to each individual partic-
ipant’s speed-accuracy tradeoff data, we conducted planned com-
parisons testing for differences in asymptote, growth rate, and
onset parameters between basic- and subordinate-level decisions.
Average values of the asymptote, growth, and onset parameters are
shown in Table 2. For typical objects from novice categories (birds
and dogs), no significant difference was observed for the onsets
[t(4) < 1.0]. For birds, the growth rate [t(4) = 3.64, p = 0.003] was
significantly higher for basic-level categorizations and the asymp-
tote [t(4)=2.33, p=0.079] was marginally higher for basic-level
categorizations. For dogs, a marginally significant difference was
observed in asymptote [t(4) = 2.18, p = 0.094] with a higher asymp-
tote for basic-level categorizations. For faces, planned comparisons
revealed a marginally significant difference in the growth rate
[t(4)=2.59, p=0.061]. Interestingly, a small but significant differ-
ence in onset, t(4) =4.53, p = 0.027, was observed, with the basic-
level condition having the shorter onset. For atypical objects, no
significant differences were observed in any of the SATF parame-
ters [t(4) < 1].

In addition to simply fitting the exponential functions to the
individual speed-accuracy tradeoff functions, we also tested
hypotheses by fitting special cases of the function. Specifically,
we tested whether the onset for basic and subordinate decisions
was the same by constraining the onset to be identical for basic
and subordinate decisions but allowing the growth rate and
asymptote to vary. We contrasted the fit of the “full model”, with
three parameters for basic and three parameters for subordinate,
with a “restricted model”, with a common onset parameter for

Table 2

Average best fitting parameters from the basic-level categorization and subordinate-
level identification SATF for typical and atypical objects in each domain. Significant
differences between parameters for basic-level categorization and subordinate-level
identification are labeled at p <0.05 (**) and p <0.10 (*).

Condition Parameters
Asymptote Growth rate Onset
Typical
Bird Basic 4.67* 10.51* 0.272
Subordinate 3.95 6.07 .0267
Dog Basic 4.76* 10.91 0.273
Subordinate 4.46 8.23 0.273
Person Basic 488 11.25" 0.228"
Subordinate 4.89 6.46 0.272
Atypical
Bird Basic 4.10 11.42 0.279
Subordinate 4.29 9.03 0.282
Dog Basic 4.181 9.21 0.269
Subordinate 417 8.90 0.283
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both basic and subordinate but separate growth and asymptote
parameters for basic and subordinate. If the restricted model with
a common onset fits significantly worse than the full model, we
can reject the hypothesis that the onset is the same for basic-
and subordinate-level categorizations. Following Dosher (1981),
the quality of the fitted models was assessed using an R? statistic
that represents the proportion of variance accounted for by the
model and was adjusted by the number of free parameters in the
model. Model comparisons are based on the direct comparison of
the R? values with higher R? values indicating better accounts of
the observed data. For typical objects from novice categories (birds
and dogs), the restricted models with equal onsets fitted as well as
the full model where onsets could be different (for birds, average
R? was .948 for the full model and .957 for the restricted model;
for dogs, average R? was .912 for the full model and .932 for the re-
stricted model). For faces, the restricted model with equal onsets
(average R? = .858) fitted as well as the full model with unequal on-
sets (average R?=.861). Fits of the SATF for atypical objects
showed similar results as for typical objects, with the restricted
model fitting as well as the full model for both atypical birds (full:
R? =.928, restricted: R? =.934) and atypical dogs (full: R? =.873, re-
stricted: R® =.897).

3.3. Discussion

For the novice categories, even though basic-level categoriza-
tion was faster and more accurate than subordinate-level identifi-
cation in Experiment 1, there was no significant delay in the onset
of subordinate-level identification compared to basic-level catego-
rizations in the STR task. Basic-level categorizations may be made
faster than subordinate-level identification, but basic-level catego-
rization does not appear to be a stage of processing that precedes
subordinate-level identification.

One potential concern could be that we failed to muster suffi-
cient statistical power to detect significant differences in the onset
when the exponential functions were fitted to the observed data.*
In fact, we were able to observe a small but statistically significant
onset difference of only 27 ms for faces. This onset effect is one half
the size of the basic-level advantage in response time we observed in
the first experiment. This suggests that we had sufficient statistical
power to detect a putative onset difference with dogs and birds.

Turning now to the significant onset difference with faces, recall
that the stage model outlined in Fig. 1 predicts an onset difference
for novice objects, with little or no onset differences for expert cat-
egories. That is clearly not what we found. So why might basic-le-
vel categorizations of faces show an earlier onset than
subordinate-level identification of faces? Perhaps a face is first cat-
egorized as a “face” before it is identified uniquely. Indeed, this
stage-like processing of faces has been suggested by some (e.g.,
Anaki et al., 2007; Liu et al., 2002). It is surprising, however, that
such stage-like processing would be found for faces, which do
not show any basic-level advantaged in speeded categorization,
and not for objects from novice categories, which do show a ba-
sic-level advantage. Perhaps this is a special property of face pro-
cessing that is not true for other categories of object.

Alternatively, it may be that basic-level categorization - is there
a “face” in the image? - could be driven by low-level image proper-
ties available very early in visual processing. It is known that peo-

4 We also conducted another experiment that used essentially the same stimuli
and procedures and observed qualitatively the same results for non-face objects. The
only difference between that study and the one reported here is that we did not
include as many response signal delays, especially at the longer times; this gave us
more trials per condition. However, while long response signals are unimportant for
our primary question about the onset of the SATF, data from those long response
signals is important for getting adequate fits of the asymptote parameter of the SATF,
which is why we reported the present study instead of this one.

ple can rapidly categorize based on perceptually salient features
and that such salient features are often available before less salient,
but potentially more diagnostic features (e.g., Lamberts, 2000). To
gain some further insight into this puzzling result, we averaged to-
gether all of the face images, bird images, and dog images without
controlling for viewpoint differences across the images. For face
images, this average was roughly an oval face contour. The average
of the bird images and dog images did not look like a bird or a dog
or any other clearly identifiable basic shape. Further research is
necessary to completely understand this phenomenon (e.g., are on-
set differences found with face stimuli that include more variable
viewpoints?). What is clear, however, is that non-face (non-expert)
objects did not show any stage-like processing effects in the speed-
accuracy tradeoff function.

4. General discussion

For novices, objects are categorized faster at the basic level than
at more subordinate levels (Rosch et al.,, 1976). Jolicoeur et al.
(1984) noted that such data are consistent with a model where ob-
jects must first be categorized at the basic level before they can be
categorized at coarser or finer levels, speculating that “every object
has one particular level at which contact is made first with seman-
tic memory” (p. 272). According to this view, basic-level categori-
zation is fast because it is the “entry level” into semantic
knowledge. In other words, basic-level categorization is fast be-
cause it is completed before other stages of categorization can be-
gin. Interestingly, the difference between basic-level
categorization and subordinate-level identification typically disap-
pears with expertise (Gauthier & Tarr, 1997; Tanaka & Taylor,
1991). This has been characterized as an “entry-level shift”, where-
by expert objects and atypical objects can be identified at a subor-
dinate level without first being categorized at the basic level.

This stage-like view of visual object processing is implicit in
some writings and has been explicitly suggested recently by Grill
Spector and Kanwisher (2005). They contrasted the time course
of object detection, basic-level categorization, and subordinate-le-
vel identification by systematically varying the exposure duration
of images in the experiment. Performance on subordinate-level
identification was significantly worse than object detection and
basic-level categorization at all exposure durations, but perfor-
mance on object detection and basic-level categorization was iden-
tical. Their conclusion was stated in the paper’s subtitle, “As soon
as you know it is there, you know what it is.” They suggested that
image segmentation — detecting that an object is there - and basic-
level categorization — knowing what it is - could be intimately
linked as a stage of visual processing prior to subordinate-level
identification. The tight temporal coupling between object detec-
tion and basic-level categorization has been decoupled in recent
work (Bowers & Jones, 2008; Mack et al., 2008). The present work
examined the temporal relationship between basic-level categori-
zation and subordinate-level identification.

Our experimental results argue against any stage-like process of
basic-level categorization preceding subordinate-level identifica-
tion. While categorization of typical objects from novice categories
is faster at the basic level than the subordinate level in a speeded
category verification task, no qualitative difference was observed
in the time course of decisions in a signal-to-respond paradigm.
Specifically, there was no observed delay in the onset of the
speed-accuracy tradeoff function for identification relative to
categorization.

As we noted in the introduction, many computational models of
object recognition and object categorization assume no stage-like
processing architecture (Joyce & Cottrell, 2004; Lamberts, 2000;
Nosofsky & Kruschke, 1992; Nosofsky & Palmeri, 1997; Palmeri,
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1997; Riesenhuber & Poggio, 2000). But if that is the case, why are
subordinate-level identifications slower than basic-level categori-
zations in novice domains? And what happens when this differ-
ence goes away, as in expert domains or with atypical objects? In
many models, basic-level categorization and subordinate-level
identification are both perceptual decisions at the same stage of
processing (Palmeri & Cottrell, 2008; Palmeri & Tarr, 2008). Some
models explicitly propose that these perceptual decisions are made
in prefrontal cortex (Riesenhuber & Poggio, 2000) or other brain
areas (Ashby, Ennis, & Spiering, 2007) but that they are not made
in visual cortex (Jiang, Bradley, Rini, Zeffiro, VanMeeter, & Riesenh-
uber, 2007). The speed of these perceptual decisions can be influ-
enced by a variety of factors, such as the speed of perceptual
processing (Lamberts, 2000), the ease or difficulty of discrimina-
tions (D’Lauro, Tanaka, & Curran, 2008), or the quality of the visual
representations used to drive those perceptual decisions (Palmeri
et al., 2004).

Indeed, in other work, we are exploring how one model of ob-
ject categorization, the exemplar-based random walk (EBRW)
model (Nosofsky & Palmeri, 1997; Palmeri, 1997), accounts natu-
rally for both the basic-level advantage for novices and the en-
try-level shift with expertise, without assuming stage of
processing for the basic level or any qualitative change in represen-
tations over learning (Mack, Wong, Gauthier, Tanaka, & Palmeri,
2007; see also Palmeri et al., 2004). Models like EBRW do not pro-
pose any qualitative reconfiguration with learning. Instead they as-
sume gradual quantitative changes - a sharpening of
representations over time (see also Jiang et al., 2006; Jiang et al.,
2007). Yet these quantitative changes can give rise to qualitatively
different patterns of results across novice and expert categoriza-
tion (see also Joyce & Cottrell, 2004). Faster categorization is pre-
dicted without assuming different stages of processes. Fastest
does not necessarily mean first.
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