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Learning Behaviour
•	Both low and medium 

complexity problems 
learned quickly

•	Complexity related to 
learning difficulty

•	RTs showed 
corresponding speed-
ups with learning

Indexing neural dimensionality reduction 
with principal component analysis (PCA)

Learning-related neural compression

Introduction
Prefrontal cortex (PFC) is thought to focus on goal-relevant 
information. Specifically, medial PFC has been shown to code 
for latent structures of experience in cognitive maps1,2,3. 

Category learning 
models formalize 
this process through 
feature-based 
attentional tuning and 
knowledge clustering4,5. 

This theoretical convergence suggests mPFC may perform 
data reduction, compressing task-irrelevant features and 
emphasizing goal-relevant information structures.

Research Questions
•	Does mPFC perform goal-sensitive data 

reduction during learning?

•	Are individual differences in learning ability 
and attentional tuning predicted by mPFC 
neural compression?   

Methods
fMRI category learning tasks (1.7mm-iso voxels, 2s TR, whole brain)

22 participants learned three classic categorization tasks6

4 fMRI runs per task, 32 trials per run, 128 trials total per task

Neural compression predicts individual 
differences in learning ability 

Conclusions
•	 mPFC representations are shaped by experience 

through goal-sensitive dimensionality reduction

•	 mPFC compression consistent with mechanisms of 
SUSTAIN learning model4,5, providing quantitative 
account of mPFC’s role in concept formation7

•	 Dimensionality reduction through selective 
attention may underlie many mPFC functions  
(e.g., cognitive maps, latent causal models, schemas, value coding)
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Medial PFC representational compression during learning
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• mPFC representations show 
task-specific compression 
(low > medium > high complexity)

• Neural compression emerges 
over learning

• Similar pattern in left 
parietal, but subthreshold
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βmed = -0.053
p = 0.002

β = -0.054
p = 0.0001specificity of 

attentional tuning

Greater mPFC 
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associated with 
more optimal 
task-specific 
feature attention
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