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Abstract 

How does object perception influence scene perception? A 

recent study of ultrarapid scene categorization (Joubert et 

al., 2007) reported facilitated scene categorization for scenes 

with consistent objects compared to scenes with inconsistent 

objects.  One proposal for this consistent-object advantage 

is that ultrarapid scene categorization is influenced directly 

by explicit recognition of particular objects in the scene. We 

instead asked whether a simpler mechanism that relied only 

on scene categorization without any explicit object 

recognition could explain the consistent-object advantage. 

We combined a computational model of scene recognition 

based on global scene statistics (Oliva & Torralba, 2001) 

with a diffusion model (Ratcliff, 1978) of perceptual 

decision making. Simulations show that this model is 

sufficient to account for the consistent-object advantage.  

Importantly, this effect need not arise from explicit object 

recognition, but from the inherent influence certain objects 

have on the global scene statistics diagnostic for scene 

categorization.   

Keywords: scene categorization; object recognition 

Introduction 

What is the relationship between scene perception and 

object perception?  Past research has examined how objects 

are recognized in consistent or inconsistent scenes (e.g., 

Biederman, Mezzanotte, & Rabinowitz, 1982; Davenport & 

Potter, 2004; Palmer, 1975).  The general finding is that it is 

easier to recognize objects in semantically consistent scenes, 

such as recognizing a toaster in a kitchen compared to 

recognizing a toaster in a bedroom  (Davenport & Potter, 

2004; Henderson & Hollingworth, 1999; Palmer, 1975).  

One proposed mechanism for facilitated recognition of 

objects contained in consistent scenes is an interacting, dual 

system account (Davenport, 2007; Davenport & Potter, 

2004).  At the same time that the object recognition system 

is extracting information for an object categorization, the 

scene perception system is extracting evidence for a scene 

categorization. Object and scene perception systems operate 

in parallel, sharing information and converging on a full 

description of the environment, facilitating categorizations 

that are consistent with one another. 

The interacting, dual-system account is supported by 

evidence for scene perception facilitating object recognition. 

Of course, the converse should be the case as well. Scene 

recognition can also be influenced by object perception.  

Indeed, Davenport and Potter (2004) found that scene 

categorization was facilitated when the scene contained a 

consistent object (e.g., a football field with a football player) 

compared to an inconsistent object (e.g., a football field 

with a priest).   

A recent study (Joubert, Rousselet, Fize, & Fabre-Thorpe, 

2007) reported a similar advantage for scenes containing 

consistent objects versus inconsistent objects in ultrarapid 

scene  categorization.  Participants were presented with 

scenes for only 26ms and performed a go/no-go decision 

about the scene’s superordinate category (natural or man-

made).  As illustrated in Figure 1, scene images either 

contained objects consistent with the scenes’ category (e.g., 

an urban street scene with a parked car) or contained objects 

inconsistent with the scenes’ category (e.g., an urban street 

scene with a large tree).  A post-hoc analysis comparing 

these two types of scenes showed a consistent-object 

advantage such that participants made fewer errors and were 

faster to respond when categorizing a scene containing a 

consistent object.  Joubert et al. explained this consistent-

object advantage with the interacting, dual-system account: 

Information extracted by the object recognition system 

influences the rapid processing and categorization decision 

by the scene perception system.  For a scene containing an 

inconsistent object, the object information conflicts with the 

evidence for the scene’s category, leading to more errors 

and slower reaction times.   

Previous work has shown that ultrarapid scene 

categorization is largely determined by coarse, global scene 

properties (Oliva & Schyns, 1997; Schyns & Oliva, 1994).  

Furthermore, computational models that represent scenes 

based on their global spatial structure are sufficient for 

ultrarapid scene categorization (Oliva & Torralba, 2001).  

Importantly, such models capture only the diagnostic global 

features of scenes without explicitly representing any local 

content of the scene, such as the location, presence, or 

identity of particular objects (Greene & Oliva, 2009). The 

feature set used by these models is based on global image 

statistics calculated across the entire scene, such as the 

scene’s spatial frequency content.   

A possibility suggested by the Joubert et al. (2007) results 

is that ultrarapid scene categorization based on global image 

properties is influenced in some way by ultrarapid 

categorization of particular objects in the scene that are 

either consistent or inconsistent with the scene’s category.  

We instead asked whether the consistent-object advantage 

could be explained by a simpler mechanism that relied only 
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on scene categorization without any explicit object 

recognition whatsoever. 

Consider a forest scene. A small shed in that scene would 

be considered an inconsistent object. We could replace that 

shed with a consistent object, say a large bush. The global 

image statistics of a forest scene with a small shed will only 

be slightly different from those of a forest scene with a large 

bush. But they will not be identical. And that’s the key. 

While perhaps quite small, is the difference in image 

statistics between scenes containing consistent objects 

versus scenes containing inconsistent objects sufficient to 

account for the consistent-object advantage? If so, then the 

consistent-object advantage in ultrarapid scene 

categorization can be explained by scene categorization 

alone, without any explicit object recognition. 

To explore this possibility, we combined a computational 

model of scene recognition based solely on global scene 

statistics (Oliva & Torralba, 2001) with a diffusion model 

(Ratcliff, 1978) of perceptual decision making.  

Interpretation of global scene statistics provides evidence 

that drives a stochastic diffusion of perceptual evidence to a 

decision threshold. The model aims to explain both response 

probabilities and reaction time distributions for categorizing 

scenes containing consistent or inconsistent object. The 

model includes no explicit object recognition. 

This paper is organized as follows: We first attempt a 

replication of the consistent-object advantage in scene 

categorization. We then analyze the behavioral data using 

the pure diffusion model, for reasons that will be made 

apparent. Finally, we present fits to observed data of our 

computational model combining a scene categorization 

front-end with the diffusion model of decision making. 

Behavioral Experiment 

This experiment attempted to replicate Joubert et al. (2007). 

Methods 

Participants Fifty Vanderbilt University undergraduate 

students (twenty-four male; age 18-23 years) participated in 

the experiment for course credit.  

 

Stimuli The stimuli consisted of color images of naturalistic 

scenes from an online image database (Oliva & Torralba, 

2001).  Scene images were divided into categories of natural 

and man-made environments.  The natural scene category 

included images of beaches, fields, mountains, and forests 

and the man-made scene category included images of 

skyscrapers, urban cities, and streets.  Two independent 

observers tagged scenes that contained a salient object that 

was consistent or inconsistent with the scenes’ natural or 

man-made category (reliability = 0.93). 192 natural scenes 

(64 with inconsistent objects) and 192 man-made scenes (64 

with inconsistent objects) were randomly selected from the 

database for the experiment. Scene images were presented 

in color and subtended 10.2° 10.2° of visual angle.  

Example stimuli are shown in Figure 1. 

 

 

 
 

Figure 1: Examples of scene stimuli.  Natural scenes (left) 

and man-made scenes (right) are shown with consistent 

objects (top) and inconsistent objects (bottom).  Color 

images were used in Experiment 1. 

 

Procedure Participants performed a go/no-go categorization 

task with target “go” category (natural or man-made scene) 

randomized for each participant.  On each trial, a fixation 

cross was presented for 500-800ms followed by a brief 

presentation of the scene image for 26ms.  Participants were 

instructed to press the response key if the scene belonged to 

the target category and withhold any response otherwise.  

Responses could be made for 1000ms after onset of the 

scene image and any responses made after this time window 

were considered no-go responses.  The trial concluded with 

a 500ms blank period before the next trial began.   

The experiment consisted of two blocks of 192 trials with 

an even split of target and distractor trials.  Scene images 

used as target trials for half of the participants served as 

distractors for the other half of participants. The entire 

experiment lasted approximately 25 minutes.   

Results 

Performance was analyzed separately by target category 

(natural and man-made) according to accuracy and reaction 

times for correct responses (see Figure 2). Both target 

category groups showed a consistent-object effect, with 

higher accuracy for scenes containing consistent objects 

compared to inconsistent objects; this effect was larger for 

the natural scene group (11.6% difference; paired Wilcoxon 

test: Z=4.17, p<0.001) than the man-made scene target 

group (1.4% difference; Z=2.648, p=0.008).  Both groups 

also showed a consistent-object effect in mean reaction 

times, with faster responses to scenes containing consistent 

objects; the effect was larger for the natural scene group 

(28ms difference; Z=4.167, p<0.001) than the man-made 

scene group (10ms difference; Z=2.435, p=0.015).   
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Figure 2: Average accuracy (left) and RT for correct 

responses (right) for consistent-object scenes (dark 

columns) and inconsistent-object scenes (light columns).  

Error bars represent 95% confidence intervals.   

Discussion 

We replicated the consistent-object advantage found by 

Joubert et al. (2007).  For both man-made or natural scene 

targets, scenes with consistent objects were categorized 

faster and with fewer errors than scenes with inconsistent 

objects. The consistent-object advantage was larger for 

natural scenes, but this may be explained by stimulus factors 

as we did not attempt to equate the natural and man-made 

scene images in terms of visual properties or similarity.   

Diffusion Model Analysis 

The diffusion model is a well-known model of perceptual 

decision making (Ratcliff, 1978). Decisions are made 

through a stochastic accumulation of noisy evidence over 

time toward a decision threshold (see Figure 3).  The rate of 

accumulation (called the drift rate, v) is determined by the 

quality of the perceptual evidence.  Higher quality evidence 

leads to faster accumulation and faster reaction times. 

Changing the decision threshold (a) affects the tradeoff 

between speed and accuracy. Overall reaction time is given 

by the time for the perceptual decision made by the 

diffusion plus time for non-decision factors (Ter), such as 

stimulus encoding and motor response. Furthermore, in the 

full diffusion model, variability in drift rate, starting point, 

and nondecision time can be present and allow for the 

diffusion model to account for more detailed patterns of 

reaction time distributions.      

The diffusion model is typically applied to two-alternative 

forced-choice categorization. A recent study compared 

different versions of the diffusion model to account for 

go/no-go categorization (Gomez, Ratcliff & Perea, 2007).  

They tested two versions of the diffusion model, one where  

evidence accumulates towards a single decision boundary 

for the “go” response with the other boundary at negative 

infinity, and another where evidence accumulates to both 

“go” (explicit response) and “no-go” (no response) 

boundaries.  The two-boundary model was found to provide 

the best account of behavior associated with several go/no-

go categorization tasks (Gomez et al., 2007).  Therefore, we 

modeled the go/no-go scene categorization using a two-

boundary diffusion model, with one boundary for a go 

response and the other boundary for a no-go nonresponse.     

Before combining the diffusion model with a scene-

recognition front end, we wanted to use the pure diffusion 

model as a data analysis device in order to pinpoint the 

source of the consistent-object advantage in accuracy and 

reaction time. First, the consistent-object advantage could 

arise from a differences in the time to perceptually process 

and encode scenes containing consistent versus inconsistent 

objects, which could be reflected by a difference in the Ter 

parameter. Second, recognizing consistent versus 

inconsistent objects might bias the decision process, leading 

to a potential difference in the decision threshold of the 

accumulation process (the a parameter). Third, our 

hypothesized simple single process account might suggest 

that the consistent-object advantage will arise from a 

difference in the quality of the perceptual evidence (the drift 

rate, v) driving the accumulation process.   

 

 
 

Figure 3: The diffusion model. At starting point z, evidence 

accumulates at drift rate, v, towards decision bounds defined 

by a and 0.  Overall reaction time is given by the time of 

accumulation plus time for non-decision factors (Ter).   

 

Model Fitting  

The diffusion model was fitted to reaction time distributions 

using standard techniques (see, Ratcliff & Tuerlinckx, 

2002). For each individual participant, RT data for scenes 

containing consistent versus inconsistent objects were 

grouped into 6 RT bins defined by the 0.1, 0.3, 0.5, 0.7, and 

0.9 quantiles. Quantile RTs averaged across participants 

were then used to generate predicted cumulative 

distributions of response probabilities (Vandekerckhove & 

Tuerlinckx, 2007, 2008). Best-fitting model parameters 

were found using the SIMPLEX method that minimized the 

Pearson chi-square for the observed versus predicted 

number of RTs within each RT bin (an additional bin was 

included in the fitting to count the number of no-go 

responses). The full diffusion model is defined by seven 

parameters: starting point of the accumulation process and 

its variability (z, sz), decision threshold (a), drift rate and its 

variability (v, nu), and the nondecision time and its 

variability (Ter, st).  For our model fits, starting point (z=a/2) 

and its variability, variability of drift rate (nu), and 

variability of nondecision time (st) were held constant across 

the consistent and inconsistent conditions.  We fitted 
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versions of the diffusion model where the three key 

parameters, decision threshold (a), nondecision time (Ter), 

and drift rate (v), were either free to vary or were held 

constant across the consistent and inconsistent conditions.   

Results  

The variant of the diffusion model with only drift rate as a 

free parameter provided a significantly better fit to the 

behavioral data than variants with only nondecision time or 

decision threshold as a free parameter.  Table 1 shows 

values for the chi-square statistic and the appropriate 

significance tests for each version of the diffusion model.   

 

Table 1: Diffusion model fits 

 

Free parameters Chi-square p 

All fixed 5.318 -- 

a 2.746 0.109 (vs. fixed) 

Ter 3.645 0.196 (vs. fixed) 

v 1.346 0.046 (vs. fixed) 

 

Discussion  

Diffusion model analyses of the data from Experiment 1 

revealed that a model with a separate drift rates for the 

consistent and inconsistent object condition provided the 

best account of the behavioral data.  Allowing a freely 

varying nondecision time did not provide a good fit, 

suggesting that the time necessary for scene encoding was 

not affected by the consistency of the embedded object.  The 

consistent-object advantage is best accounted for by 

assuming that the quality of the perceptual evidence is 

affected by the presence of an inconsistent object.   

 

Scene Categorization Model 

To test this further, we extended a successful model of scene 

categorization (Oliva & Torralba, 2001).  Their model is the 

perceptual front-end that extracts evidence for a scene’s 

category that then drives the diffusion model of decision 

making. Specifically, the scene categorization model 

establishes the drift rate of the diffusion process, rather than 

allowing the drift rate to be a free parameter. 

Model Description  

We started with a scene categorization model developed by 

Oliva and Torralba (2001).  In this model, scenes are 

represented by a set of features that describe the global 

spatial structure of the scene (Greene & Oliva, 2009; Oliva 

& Torralba, 2001).  The feature space, known as the spatial 

envelope, is defined by measures of global shape properties 

that are extracted using a bank of Gabor filters of varying 

spatial scale and orientation. 

We followed the procedure outlined by Oliva and 

Torralba (2001).  A bank of Gabor filters spanning four 

spatial scales and eight orientations were used to extract the 

scenes’ global features.  To reduce the dimensionality of the 

filter responses, each filter output was down-sampled to a 

lower-resolution (4x4) summary.  PCA was then used to 

further reduce the dimensionality creating a final scene 

representation consisting of a 50-element vector. Natural 

versus man-made scene categories were defined by a 

hyperplane boundary extracted using linear discriminant 

analysis (see Figure 4). 

We used the results of the linear discriminant function to 

establish the drift rate of the diffusion model for each scene 

image to be categorized. Specifically, for a given scene, the 

output of the linear classifier corresponds to the distance of 

that scene from the boundary separating natural versus man-

made scenes. The sign of the distance signifies which 

category the scene is classified in and the magnitude of the 

Figure 4: The extended scene categorization model.  Scenes are first classified by the scene categorization front-end.  

The scene’s global spatial frequency is extracted with a bank of Gabor filters (a - polar plot of global spatial energy, 

spatial scale and orientation of filters shown by ellipses) and summarized into a low-resolution representation (b - 

subimages in the 4x4 grid show the global energy at that spatial location). Scene representations are projected onto a 50-

dimensional principal component space and classified by linear discriminant analysis.  The resulting classification value 

drives a stochastic accumulation of evidence towards go or no-go response boundaries. 
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distance represents the quality of that classification.  

Distance is transformed into drift rate with a sigmoid 

function that includes a scaling parameter.  Using that drift 

rate, the decision process is carried out by the diffusion as a 

stochastic accumulation of evidence to a threshold. 

We want to emphasize that this model assumes no 

parameters that vary across scenes containing consistent 

versus inconsistent objects.  The scene categorization front-

end uses the same discriminant function for scenes with 

consistent and inconsistent objects. Distance from the 

discriminant function is transformed into drift rate using the 

same function for all scenes. The diffusion process 

determining the time-course of the decision is the same for 

all scenes. It should also be clear that the model contains no 

explicit object recognition process.  Scenes are represented 

by global features that capture the scene’s spatial frequency 

structure.  The only difference between scenes containing 

consistent versus inconsistent object is in the global content, 

not recognition of any individual objects in the scenes.   

Simulation Method  

First, a set of 200 natural and 200 man-made scene images 

were randomly selected from the scene database (same as 

used in Experiment 1) for creating the PCA.  A fifty-

dimensional principal component space was extracted from 

these scenes’ Gabor-filtered representations and saved for 

the simulations.  Next, a training set consisting of another 

100 natural and 100 man-made scenes was randomly 

selected from the scene database.  These scenes were passed 

through the Gabor filters, projected into the principal 

component space, and used to train the linear discriminant 

classifier.   

The scene database we used had fewer inconsistent-object 

scenes compared to consistent-object scenes, since by 

definition, inconsistent objects are not typically found in 

those scenes. In order to test an equivalent number of scenes 

with consistent and inconsistent objects, we randomly 

selected 500 consistent object scenes and inconsistent object 

scenes with replacement from the scene database. Scenes 

used for training were never included in the testing sets. 

Test trials consisted of first passing a scene through the 

scene categorization front-end. This stage generated a 

classification value from the discriminant function that was 

transformed into a drift rate for the diffusion.  The drift rate 

drove the stochastic accumulation of evidence until a 

decision threshold (go or no-go) was reached or 1000ms had 

elapsed (tallied as a no-go response).   

The three parameters of the model (drift rate scaling 

factor, decision threshold, nondecision processing time) 

were optimized by fitting the predicted reaction time 

distributions to the observed data using the same procedure 

used in the earlier diffusion model analysis. We tested the 

model’s performance with both natural and man-made 

scenes as targets. The entire simulation procedure was 

repeated with twenty-five separate training and testing sets.  

 

Results 

Performance was analyzed separately by target category 

(natural and man-made) according to accuracy and reaction 

times for correct responses across simulation repetitions (see 

Figure 5). The model showed a consistent-object effect only 

when the target was a natural scene.  Accuracy was higher 

(Z=4.24, p<0.001) and reaction times were faster (Z=4.37, 

p<0.001) for consistent-object scenes compared to 

inconsistent-object scenes.  With man-made scenes as the 

target, mean differences in both accuracy and reaction time 

trended in the manner of a consistent-object advantage, but 

did not reach significance (Z=0.977, p=0.328; Z=1.44, 

p=0.15); recall that the difference observed for human 

subjects was also quite small.   

 

 
 

Figure 5: Simulation results.  Average accuracy (left) and 

correct response RTs (right) for consistent (dark columns) 

and inconsistent (light columns) object scenes.  

Discussion 

Simulations of ultrarapid natural scene categorization with 

the extended scene categorization model showed a 

significant consistent-object advantage for categorizing 

natural scenes as targets and a small (but not significant) 

advantage for man-made scenes; this difference across 

target scene category is qualitatively comparable to what 

was observed in Experiment 1. These initial simulations 

suggest that the global features extracted by the perceptual 

front-end of our model were influenced by the presence of 

an inconsistent object. This subtle influence may be 

sufficient to explain the lower accuracy and slower reactions 

times associated with scenes containing inconsistent objects.   

Conclusions 

The aim of our work was to test whether the consistent-

object advantage observed by Joubert et al. (2007) could be 

explained using global scene categorization mechanisms 

without object recognition. By this account, semantically 

inconsistent objects in scenes can influence the global 

perceptual evidence diagnostic for scene categorization 

without any explicit recognition of consistent versus 

inconsistent objects in the scene.  

Consistent with this simple scene categorization account, 

we presented evidence from a diffusion model analysis that 
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suggests a difference in the quality of the perceptual 

evidence available from scenes containing consistent versus 

inconsistent objects.  Furthermore, we showed that a scene 

categorization model coupled with the diffusion model 

accounts well for the consistent-object advantage. Instead of 

distinct scene and object perception systems operating in 

parallel and competing or cooperating for categorization, the 

consistent-object advantage can be explained by a single 

scene perception system that interprets the global statistics 

found in natural scenes.   

It is important to place our findings in their appropriate 

context.  First, we are not arguing that explicit recognition 

of objects never matters for scene categorization. It goes 

without saying that fully understanding the environments 

we encounter during our everyday visual experience 

requires successful object recognition.  However, in the case 

of ultrarapid ultrasuperordinate scene categorization, we 

have shown that explicit representation and recognition of 

objects in those scenes is not necessary to account for the 

influence of consistent or inconsistent objects.  Second, it 

goes without saying that this demonstration is evidence of 

sufficiency and not necessity.  Further converging evidence 

is needed to know whether mechanisms described in our 

model underlie ultrarapid scene categorization in humans.   

The computational model we proposed extends a current 

class of successful scene categorization models to predict 

both response probabilities and reaction times.  This model 

offers a richer description of scene categorization by 

accounting for the time course of the perceptual decision. 

Further behavioral research and application of this model is 

necessary to better understand the underlying mechanisms 

of scene categorization and to characterize the relationship 

between scene and object perception. 
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