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How does object perception influence scene perception? A recent study of ultrarapid scene categorization (O. R. Joubert,
G. A. Rousselet, D. Fize, & M. Fabre-Thorpe, 2007) reported facilitated scene categorization when scenes contained
consistent objects compared to when scenes contained inconsistent objects. One proposal for this consistent-object
advantage is that ultrarapid scene categorization is influenced directly by ultrarapid recognition of particular objects within
the scene. We instead asked whether a simpler mechanism that relied only on scene categorization without any explicit
object recognition could explain this consistent-object advantage. We combined a computational model of scene
recognition based on global scene statistics (A. Oliva & A. Torralba, 2001) with a diffusion model of perceptual decision
making (R. Ratcliff, 1978). This model is sufficient to account for the consistent-object advantage. The simulations suggest
that this consistent-object advantage need not arise from ultrarapid object recognition influencing ultrarapid scene
categorization, but from the inherent influence certain objects have on the global scene statistics diagnostic for scene
categorization.
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Introduction

What is the relationship between scene recognition and
object recognition? Past research has examined how
objects are recognized in semantically consistent or
inconsistent scenes (e.g., Biederman, Mezzanotte, &
Rabinowitz, 1982; Davenport & Potter, 2004; Palmer,
1975). The general finding is that it is easier to recognize
objects in semantically consistent scenes, such as recog-
nizing a toaster in a kitchen compared to recognizing a
toaster in a bedroom (Davenport & Potter, 2004;
Henderson & Hollingworth, 1999; Palmer, 1975).
One proposed mechanism for facilitated recognition of

objects contained in consistent scenes is an interacting,
dual-system account (Davenport, 2007; Davenport &
Potter, 2004). At the same time that the object recognition
system is extracting information for an object categoriza-
tion, the scene recognition system is extracting evidence
for a scene categorization. Recognition of the scene
activates representations of objects typically found in that
kind of scene thereby facilitating categorizations of scene-
consistent objects. While the interacting, dual-system
account is supported by evidence for scene recognition
facilitating object recognition, the converse should be true
as well. Indeed, Davenport and Potter (2004) found that
scene categorization was facilitated when the scene
contained a consistent object (e.g., a football field with a

football player) compared to an inconsistent object (e.g., a
football field with a priest). Object and scene recognition
operates in parallel activating probable object and scene
representations to converge on a full description of the
environment.
A recent study (Joubert, Rousselet, Fize, & Fabre-

Thorpe, 2007) reported a similar advantage for scenes
containing consistent objects versus inconsistent objects in
ultrarapid scene categorization. Participants were pre-
sented with scenes for 26 ms and performed a speeded
go/no-go decision about the scene’s superordinate cate-
gory (natural versus man-made). Most of the scenes in
their stimulus set contained no salient objects, but a
portion of the scene images (see Figure 1) either contained
salient objects consistent with the scenes’ category (e.g.,
an urban street scene with a parked car categorized as
man-made) or contained salient objects inconsistent with
the scenes’ category (e.g., an urban street scene with a
large tree categorized as man-made).1 A post-hoc analysis
of these different types of scenes revealed that scenes
containing an inconsistent object were categorized less
accurately and more slowly than scenes containing a
consistent object.
The dual-system account explained above provides a

straightforward explanation of Joubert et al.’s finding of a
disadvantage for categorizing scenes with inconsistent
objects: The object recognition system activates semanti-
cally related scene category representations that influence
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the rapid processing and categorization decision made by
the scene recognition system. For a scene containing an
inconsistent object, the semantic information from the
object conflicts with the evidence for the scene’s category
leading to more errors and slower reaction times. Perhaps
the most intriguing aspect of this explanation is the
relative timing of object and scene processing; object
information is extracted and mapped onto conceptual
representations fast enough to influence ultrarapid deci-
sions about a scene’s naturalness.
Joubert et al. used real scenes selected from a large

database that happened to contain consistent objects,
inconsistent objects, or no obvious objects. While using
real scenes is a far better representation of everyday visual
experience, a potentially unfortunate consequence of this
realness is that potentially important visual information
across scenes containing consistent or inconsistent objects
cannot be controlled. Consider other previous studies
(Davenport, 2007; Davenport & Potter, 2004) that tested
the semantic influence of object information on scene
categorization. Contrasting objects (e.g., a football player
or a priest) were pasted into contrasting scenes (e.g., a
football stadium or a church), forgoing a bit of reality for
a full factorial combination of objects and scenes. With
this level of control, any effect of object consistency on
scene categorization is likely caused by semantic influen-
ces (Davenport, 2007; Davenport & Potter, 2004). The
influence of object consistency on scene categorization
found by Joubert et al. could also be based on semantic
information from object recognition as proposed by the

dual-system account. However, with uncontrolled real
scenes, it could arise from differences in visual informa-
tion driving scene categorization without any object
recognition, as we demonstrate in this article.
Previous work has shown that ultrarapid scene catego-

rization is largely determined by coarse, global scene
properties (Oliva & Schyns, 1997; Schyns & Oliva, 1994).
With just a glance at a scene, global properties, such as
naturalness, are perceived rapidly even before a scene’s
basic-level category is determined or its objects are
recognized (Greene & Oliva, 2009b). Furthermore, com-
putational models that represent scenes based on their
global spatial structure are sufficient for ultrarapid scene
categorization (Oliva & Torralba, 2001). Such models
capture only the diagnostic global features of scenes
without explicitly representing any local content of the
scene, such as the location, presence, or identity of
particular objects (Greene & Oliva, 2009a). The feature
set used by these models is based on global image
statistics calculated across the entire scene, such as the
scene’s spatial frequency content. Linear combinations of
certain spatial frequency components correlate with
subjective judgment of scene characteristics such as
openness and naturalness (Oliva & Torralba, 2001). Other
proposals for global representations of scenes based on
visual features including texture elements (Renninger &
Malik, 2004) and SIFT descriptors (Lazebnik, Schmid, &
Ponce, 2006) have also successfully accounted for scene
categorization.
In the current study, we asked whether the consistent-

object advantage in ultrarapid scene categorization
reported by Joubert et al. could be predicted entirely by
scene categorization mechanisms proposed by Oliva
and colleagues without any explicit object recognition
whatsoever.
Consider a forest scene. A small shed in that scene would

be considered an inconsistent object (see Footnote 1). We
could replace that shed with a consistent object, say a
large bush. The global image statistics of a forest scene
with a small shed will only be slightly different from
those of a forest scene with a large bush. But they will
not be identical. And that’s the key. While perhaps quite
small, is the difference in image statistics between scenes
containing consistent objects versus scenes containing
inconsistent objects sufficient to account for the consistent-
object advantage? If so, then the consistent-object advant-
age in ultrarapid scene categorization can be explained by
scene categorization alone, without any explicit object
recognition. Critically, instead of semantic information
activated by an object recognition system, the influence of
objects on ultrarapid scene categorization arises from
subtle changes in a scene’s global representation of visual
information.
To explore this possibility, we combined a computa-

tional model of scene recognition based solely on global
scene statistics (Oliva & Torralba, 2001) with a diffusion
model of perceptual decision making (Ratcliff, 1978).

Figure 1. Examples of scene stimuli. Natural scenes (left) or man-
made scenes (right) are shown containing consistent objects (top)
or inconsistent objects (bottom).

Journal of Vision (2010) 10(3):11, 1–11 Mack & Palmeri 2



Interpretation of global scene statistics provides evidence
that drives a stochastic diffusion of perceptual evidence to
a decision threshold. The model aims to explain both
response probabilities and reaction time distributions for
categorizing scenes containing consistent versus incon-
sistent objects. The model includes no explicit object
recognition.
This paper is organized as follows: We first attempt a

replication of the consistent-object advantage in scene
categorization with both go/no-go and two-alternative,
forced-choice paradigms. We then analyze the behavioral
data using the pure diffusion model, for reasons that will be
made apparent. Finally, we present fits to observed data of
our computational model combining a scene categorization
front-end with the diffusion model of decision making.

Behavioral experiments

The consistent-object advantage in the Joubert et al.
study was discovered through a post-hoc analysis of data
from a subset of the experimental trials. The current
experiments attempted to replicate Joubert et al. (2007),
but with an explicit manipulation of object consistency.
Following Joubert et al., we used natural scenes selected
from a larger database of scenes. We focused on the
specific comparison of scenes with consistent objects
versus scenes with inconsistent objects. We first attempted
a replication of Joubert et al.’s go/no-go scene catego-
rization paradigm. With the goal of applying the diffusion
model (Ratcliff, 1978) to this behavioral data, we also
conducted a two-alternative, forced-choice (2AFC) ver-
sion of the scene categorization task. While recent work
(Gomez, Ratcliff, & Perea, 2007) has clarified how the
diffusion model can account for go/no-go perceptual
decisions, the diffusion model was developed for and is
commonly applied to 2AFC decision making paradigms
(Ratcliff & Rouder, 1998). Due to the similarity in
methods and results between these two experiments, we
present both experiments together.

Methods
Participants

Fifty Vanderbilt University undergraduate students
(twenty-six female; age 18–23 years) participated in the
go/no-go experiment. Twenty-three different Vanderbilt
University undergraduate students (thirteen female; age
18–24 years) participated in the 2AFC experiment. All
participants were compensated with course credit.

Stimuli

The stimuli consisted of color images of naturalistic
scenes from an online image database (Oliva & Torralba,

2001). Scene images were divided into categories of
natural and man-made environments. The natural scene
category included images of beaches, fields, mountains,
and forests and the man-made scene category included
images of skyscrapers, urban cities, and streets. Only
scenes with salient objects were used in the behavioral
experiments. Two independent observers tagged scenes
that contained a salient object that was consistent or
inconsistent with the scenes’ natural or man-made
category (reliability = 0.93). 192 natural scenes (64 with
inconsistent objects) and 192 man-made scenes (64 with
inconsistent objects) were randomly selected from the
database for the experiments. This set of 384 scene images
was used for every participant. Scene images were
presented in color and subtended 10.2- � 10.2- of visual
angle. Example stimuli are shown in Figure 1.

Procedure

Go/No-go Experiment. In the go/no-go experiment,
participants were randomly assigned to a “go” category
of natural or man-made scenes (with the other category
assigned “no-go”). On each trial, a fixation cross was
presented for 500–800 ms followed by a brief presentation
of the scene image for 26 ms. Participants were instructed
to press the response key if the scene belonged to the
target category and withhold any response otherwise.
Responses could be made for 1000 ms after onset of the
scene image and any responses made after this time
window were considered no-go responses because the
experiment moved on to the next trial. The trial concluded
with a 500 ms blank period before the next trial began.
The experiment consisted of two blocks of 192 trials with
an even split of target and distractor trials. Scene images
used as target trials for half of the participants served as
distractors for the other half of participants. The entire
experiment lasted approximately 25 minutes.
2AFC Experiment. The 2AFC experiment consisted of

the same trial sequence as the go/no-go experiment.
Participants were instructed to respond to the category of
the scene (natural or man-made) by pressing one of two
labeled response keys. Responses could be made for
1000 ms after onset of the scene image. The experiment
consisted of two blocks of 192 trials with an even
proportion of natural and man-made scenes. The entire
experiment lasted approximately 25 minutes.

Results

Go/No-go Experiment. Accuracy and reaction times for
correct responses was analyzed separately by target
category (natural or man-made scene) (Figure 2). For
both target category groups, we observed a significant
consistent-object advantage, with higher accuracy for
scenes containing consistent objects compared to incon-
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sistent objects; this effect was larger for the natural scene
group (11.6% difference; paired Wilcoxon test: Z = 4.17,
p G 0.001) than the man-made scene group (1.4% differ-
ence; Z = 2.648, p = 0.008). Both groups also showed a
consistent-object advantage in mean reaction times, with
faster responses to scenes containing consistent objects;
the effect was larger for the natural scene group (28 ms
difference; Z = 4.167, p G 0.001) than the man-made scene
group (10 ms difference; Z = 2.435, p = 0.015).
2AFC Experiment. Accuracy and reaction time for

correct response were analyzed in the same manner
(Figure 2). Results largely replicated those found in the
go/no-go experiment. Both target category groups showed
a significant consistent-object advantage, with higher
accuracy for scenes containing consistent objects com-
pared to inconsistent objects; this effect was larger for the
natural scene group (7.4% difference; paired Wilcoxon
test: Z = 4.05, p G 0.001) than the man-made scene target
group (2.5% difference; Z = 2.97, p = 0.003). Both groups
also showed a consistent-object effect in mean reaction
times, with faster responses to scenes containing consis-
tent objects; the effect was larger for the natural scene

group (23 ms difference; Z = 3.92, p G 0.001) than the
man-made scene group (7 ms difference; Z = 1.97, p =
0.049).

Discussion

We replicated the consistent-object advantage in a
go/no-go scene decision (Joubert et al., 2007) and found
converging evidence for the consistent-object advantage
in a 2AFC scene categorization decision. For both man-
made and natural scene targets, scenes containing con-
sistent objects were categorized faster and with fewer
errors than scenes containing inconsistent objects. The
consistent-object advantage was larger for natural scenes,
but this may be explained by stimulus factors; we did not
attempt to equate the natural and man-made scene images
in terms of visual properties or similarity. A similar
difference in magnitude of the consistent-object advantage
for natural and man-made scenes was reported by Joubert
et al. (2007).

Diffusion model analysis

The diffusion model is a well-known model of percep-
tual decision making (Ratcliff, 1978). Decisions are made
by a stochastic accumulation of noisy evidence over time
toward a decision threshold (Figure 3). The rate of
accumulation (called the drift rate, v) is determined by
the quality of the perceptual evidence. Higher-quality
evidence leads to faster accumulation and faster reaction
times. Changing the decision threshold (a) affects the
tradeoff between speed and accuracy. Overall reaction
time is given by the time for the perceptual decision made
by the diffusion plus time for non-decision factors (Ter)
such as stimulus encoding and motor response times. In
the full diffusion model, variability in drift rate, starting
point, and nondecision time can be present and allow for
the diffusion model to account for more detailed patterns

Figure 2. Behavioral results for the go/no-go (top) and 2AFC
(bottom) decisions from Experiment 1. Average accuracy (left)
and RT for correct responses (right) for consistent-object scenes
(dark bars) and inconsistent-object scenes (white bars). Error
bars represent 95% confidence intervals of consistent- versus
inconsistent-object comparison.

Figure 3. Illustration of the diffusion model. At starting point z,
noisy evidence accumulates with a drift rate, v, towards decision
bounds at 0 and a. Overall reaction time is given by the time of
stochastic accumulation plus time for non-decision factors (Ter).
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of reaction time distributions (Ratcliff & Rouder, 1998).
However, since simple differences in mean reaction times
and accuracy are typically predicted by changes in drift
rate, decision threshold, and nondecision time (e.g.,
Wagenmakers, van der Maas, & Grasman, 2007), we
focused our analysis on these three parameters.
The diffusion model is typically applied to 2AFC

categorization. A recent paper extended the diffusionmodel
to account for go/no-go categorization as well (Gomez
et al., 2007). They tested two versions of the diffusion
model, one where evidence accumulates towards a single
decision boundary for the “go” response with the other
boundary at negative infinity, and another where evidence
accumulates to both “go” (explicit response) and “no-go”
(no response) boundaries. The two-boundary model was
found to provide the best account of behavior associated
with several go/no-go categorization tasks (Gomez et al.,
2007). Therefore, we modeled the data from the go/no-go
scene categorization experiment using a two-boundary
diffusion model, with one boundary for a go response and
the other boundary for a no-go non-response.
Before combining the diffusion model with a scene-

recognition front end, we used the pure diffusion model as
a data analysis device in order to pinpoint the source of
the consistent-object advantage in accuracy and reaction
time. The consistent-object advantage could arise from a
variety of difference sources in the diffusion model:
First, it could arise from a difference in the time to

perceptually process and encode scenes containing con-
sistent versus inconsistent objects. In other words, even
though the advantage is observed behaviorally in terms of
the overt task response, the advantage is not because of
faster decisions per se. Instead, perceptual processing is
more efficient when scenes contain consistent objects. This
would be reflected by a difference in the Ter parameter.
Second, recognizing consistent versus inconsistent

objects might bias the decision process. Imagine that
ultrarapid object recognition detects a man-made object or
a natural object. Clearly, the task does not ask for an
object recognition response. However, the results of object
recognition could bias the scene categorization decision,
leading to a difference in the decision threshold of the
accumulation process (the a parameter) in the direction
consistent with the ultrarapid object recognition.
Finally, the advantage could arise from a difference in the

quality of the perceptual evidence driving the accumulation
process. This would be reflected in a difference in drift rate,
v. As we will detail later, the drift hypothesis is most
consistent with an hypothesized account where scene
perception mechanisms alone lead to the consistent-object
advantage because of differences in global scene statistics.

Model fitting

The diffusion model was fitted to reaction time
distributions from the two experiments using standard

techniques (see Ratcliff & Tuerlinckx, 2002) with the
Diffusion Model Analysis Toolbox (Vandekerckhove &
Tuerlinckx, 2008). For each individual participant, RT
data for scenes containing consistent versus inconsistent
objects were grouped into 6 RT bins defined by the 0.1,
0.3, 0.5, 0.7, and 0.9 quantiles. To fit the go/no-go data, an
additional bin was included to count the number of no-go
responses. To fit the two-choice data, correct and error
RTs were grouped separately into RT bins. Quantile RTs
averaged across participants were then used to generate
predicted cumulative distributions of response probabil-
ities (Vandekerckhove & Tuerlinckx, 2007, 2008). Best-
fitting model parameters were found using the SIMPLEX
method that minimized the Pearson chi-square (#2) for the
observed versus predicted number of RTs within each RT
bin; we also report Bayesian Information Criterion (BIC)
statistics for model fits, which can be characterized as a
maximum likelihood measure with a term that penalizes a
model for its number of free parameters (Schwarz, 1978).
The full diffusion model is defined by seven parameters:
starting point of the accumulation process and its
variability (z, sz), decision threshold (a), drift rate and its
variability (v, )), and the nondecision time and its
variability (Ter, st). For our model fits, starting point (z =
a/2) and its variability, variability of drift rate ()), and
variability of nondecision time (st) were held constant
across the consistent and inconsistent conditions; fitting
such a highly parameterized model requires data from more
conditions than we had. So following other recent work
with the diffusion model (Wagenmakers et al., 2007), we
fitted versions of the model where only the three key
parameters, decision threshold (a), nondecision time (Ter),
and drift rate (v), were free to vary or were held constant
across the consistent and inconsistent conditions (see also,
Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers,
2009; Grasman, Wagenmakers, & van der Maas, 2009;
Matzke & Wagenmakers, 2009); we compared these
versions of the diffusion model with a version where all
three parameters were fixed across consistent and incon-
sistent conditions. In a sense, we are using the diffusion
model as a data analysis tool in much the same way that
psychophysicists routinely use signal detection theory.

Results

Table 1 displays values for the chi-square statistic, BIC
statistic, and the appropriate significance tests for each
version of the diffusion model fitted to the data from the
go/no-go and 2AFC experiments (see Appendix A for
best-fitting parameter values). For the natural scene
condition, the variant of the diffusion model with only
drift rate as a free parameter provided a significantly
better fit to the behavioral data than variants with only
nondecision time or decision threshold as a free parame-
ter. For the man-made scene condition, none of the
diffusion model variants with a free parameter provided
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a better fit than the baseline model with all parameters
held constant across the consistent and inconsistent object
conditions; it is likely that the small magnitude of the
consistent-object advantage for man-made scenes contrib-
uted to this nonidentifiability.

Discussion

Diffusion model analyses revealed that a model with
separate drift rates for the consistent and inconsistent
object condition provided the better account of the
behavioral data than models with separate residual times
(Ter) or response boundaries (a), at least when natural
scenes were the target category. The consistent-object
advantage in scene categorization seems to arise from
differences in the quality of perceptual evidence, not
differences in the time to perceptually processes the
scenes or from a biased decision process.

Dynamic scene categorization
model

To test this idea further, we extended a successful
model of scene categorization (Oliva & Torralba, 2001).

This model is the perceptual front-end that extracts
evidence for a scene’s category that then drives the
diffusion model of decision making. Specifically, the
scene categorization model establishes the drift rate of
the diffusion process, rather than allowing the drift rate to
be a free parameter. This is analogous to earlier work that
used object categorization models to establish drift rate of
a diffusion-like process in order to account for speeded
object categorization decisions (e.g. Nosofsky & Palmeri,
1997; Palmeri, 1997).

Model description

We started with the scene categorization model devel-
oped by Oliva and Torralba (2001). In this model, scenes
are represented by a set of features that describe the global
spatial structure of the scene (Oliva & Torralba, 2001).
The feature space, known as the spatial envelope, is
defined by measures of global shape properties that are
extracted using a bank of Gabor filters of varying spatial
scales and orientations for a particular spatial resolution.
Linear combinations of these spatial frequency compo-
nents correlate with subjective characteristics of scenes
such as mean depth, openness, expansion, and naturalness
(Oliva & Torralba, 2001). Since the scene categorization
task asked participants to categorize scenes as natural or
man-made, we concentrated on spatial frequency features
diagnostic to the naturalness of a scene.
We followed the procedure outlined by Oliva and

Torralba (2001). A bank of Gabor filters spanning four
spatial scales and eight orientations were used to extract
the scenes’ global features. To reduce the dimensionality
of the filter responses, each filter output was down-
sampled to a lower-resolution (4 � 4) summary. This
lower-resolution summary preserves spatial localization of
global scene information at a scale of 2 cycles/image.
Principal component analysis (PCA) was then used to
further reduce the dimensionality creating a final scene
representation consisting of a 50-element vector. Natural
versus man-made scene categories were defined by a
hyper-plane boundary extracted using linear discriminant
analysis (see Figure 4).
We used the results of the linear discriminant function

to establish the drift rate of the diffusion model for each
scene image to be categorized. Specifically, for a given
scene, the output of the linear classifier corresponds to the
distance of that scene from the boundary separating
natural versus man-made scenes. The sign of the distance
signifies which category the scene is classified into and the
magnitude of the distance represents the quality of the
evidence for that classification. Distance is transformed
into drift rate with a sigmoid function,

v ¼ 1=ð1þ ejnxÞ; ð1Þ

Free
parameters BIC #2

p
(vs. all fixed)

Go/No-go
Natural

fixed 1621.1 1579.3 –

a 1623.7 1576.1 0.071
Ter 1625.2 1577.6 0.184
v 1606.6 1558.9 G0.001

Go/No-go
Man-made

fixed 1345.6 1303.9 –

a 1350.7 1303.1 0.339
Ter 1350.5 1302.9 0.301
v 1350.8 1303.1 0.371

2AFC
Natural

fixed 998.1 959.6 –

a 1001.3 957.3 0.133
Ter 1003.1 959.0 0.462
v 983.1 939.1 G0.001

2AFC
Man-made

All fixed 843.6 805.1 –

a 848.6 804.5 0.462
Ter 848.4 804.3 0.392
v 848.9 804.9 0.708

Table 1. Chi-square and BIC values for diffusion model fits to data
from the natural and man-made scene target conditions of the go/
no-go and 2AFC decisions from Experiment 1. The last column
shows p values for comparisons to the baseline model with all
parameters held constant across the consistent- and inconsistent-
object conditions (bold values indicate significantly better fits than
the baseline model).
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where x is the quality of the evidence and n is the drift rate
scaling parameter. Using that drift rate, the decision
process is carried out by the diffusion as a stochastic
accumulation of evidence to a threshold. For the go/no-go
model, the thresholds corresponded with a go response for
the target category and a no-go nonresponse (Gomez et al.,
2007). For the two-choice model, the thresholds corre-
sponded with the natural and man-made scene categories
(Ratcliff, 1978).
We must emphasize that this model assumes no

parameters that vary across scenes containing consistent
versus inconsistent objects. The scene categorization
front-end uses the same discriminant function for scenes
containing consistent and inconsistent objects. Distance
from the discriminant function is transformed into drift
rate using the same drift rate scaling function and the
same scaling parameter for all scenes. The diffusion
process determining the time-course of the decision is
the same for all scenes, with the same boundaries. It
should also be clear that the model contains no explicit
object recognition process. Scenes are represented by
global features that capture the scene’s spatial frequency
structure without extracting objects. The only difference
between scenes containing consistent versus inconsistent
objects is in the global content, not recognition of any
individual objects in the scenes.

Simulation method

First, a set of 200 natural and 200 man-made scene
images were randomly selected from the scene database
(same database as used in the behavioral experiments) for
creating the PCA. A fifty-dimensional principal compo-
nent space was extracted from these scenes’ Gabor-filtered

representations and saved. Next, a training set consisting
of another 100 natural and 100 man-made scenes was
randomly selected from the scene database. These scenes
were passed through the Gabor filters, projected into the
principal component space, and used to train the linear
discriminant classifier.
The scene database we used had fewer inconsistent-

object scenes compared to consistent-object scenes since,
by definition, inconsistent objects are not typically found
in those scenes. In order to ultimately test an equivalent
number of scenes containing consistent and inconsistent
objects, we randomly selected 500 consistent object
scenes and inconsistent object scenes with replacement
from the scene database. Scenes used for training were
never included in the testing sets. Test trials consisted of
first passing a scene through the scene categorization
front-end. This stage generated a classification value from
the discriminant function that was then transformed into a
drift rate for the diffusion using Equation 1. The drift rate
drove the stochastic accumulation of evidence until a
decision threshold was reached or 1000 ms had elapsed.
To model the go/no-go experiment, the decision thresh-
olds corresponded with a go or no-go response as
described in the diffusion model analysis above; the
2AFC experiment was modeled with decision thresholds
corresponding to a natural or man-made scene. The three
parameters of the model (drift rate scaling factor n,
decision threshold a, nondecision processing time Ter)
were optimized during training by fitting the predicted
reaction time distributions to the observed data using the
same procedure used in the earlier diffusion model
analysis. We tested the model’s performance with both
natural and man-made scenes as targets. For generality,
the entire simulation procedure was repeated with twenty-
five separate training and testing sets for both the go/no-go
and 2AFC models.

Figure 4. Illustration of the dynamic scene categorization model. Scenes are first classified by a scene categorization front-end. The
scene’s global spatial frequency is extracted with a bank of Gabor filters (aVpolar plot of global spatial energy, spatial scale and
orientation of filters shown by ellipses) and summarized into a low-resolution representation (bVsubimages in the 4 � 4 grid show the
global energy at that spatial location). Scene representations are projected onto a 50-dimensional principal component (PCA) space and
classified by linear discriminant analysis (Linear Classifier). The resulting classification value drives a stochastic accumulation of evidence
towards go or no-go response boundaries.
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Results

We analyzed the simulation predictions in the same way
we analyzed the behavioral data. Simulated accuracy and
reaction times for correct responses were analyzed
separately by target category (natural and man-made).
The go/no-go model predicted a significant consistent-
object effect for natural scenes (Figure 5). Accuracy was
higher (Z = 4.24, p G 0.001) and reaction times were faster
(Z = 4.37, p G 0.001) for consistent-object scenes
compared to inconsistent-object scenes. For man-made
scenes as the target, mean differences in both accuracy
and reaction time trended in the manner of a consistent-
object advantage, but did not reach criterion for statistical
significance (Z = 0.977, p = 0.328; Z = 1.44, p = 0.15);
recall that the difference observed for human subjects was
also quite small.
Similar results were found with the 2AFC simulations

(Figure 5). For natural scenes as the target, accuracy was
higher (Z = 4.38 p G 0.001) and reaction times were faster
(Z = 4.37, p G 0.001) for consistent-object scenes
compared to inconsistent-object scenes. For man-made
scenes as the target, there was no significant difference in

accuracy between consistent- and inconsistent-object
scenes (Z = 0.765, p = 0.509) but reaction times were
significantly faster (Z = 4.36, p G 0.001) for consistent-
object scenes compared to inconsistent-object scenes.

Discussion

Simulations of ultrarapid natural scene categorization
based on a go/no-go and 2AFC decision with the dynamic
scene categorization model showed a significant consistent-
object advantage for categorizing scenes. For the go/no-go
model, an advantage was shown with natural scenes as
targets and a small (but not significant) advantage for
man-made scenes; for the two-choice model, an advantage
was found with both natural and man-made scenes as
targets. The larger consistent-object advantage with
natural scenes compared to man-made scenes is qualita-
tively comparable to what was observed in human
subjects in the behavioral experiments. These simulations
suggest that the global features extracted by the perceptual
front-end of the model were influenced by the presence of
an inconsistent object. This subtle influence on global
scene context may be sufficient to explain the lower
accuracy and slower reactions times associated with
scenes containing inconsistent objects.

General discussion

The aim of our work was to test whether the consistent-
object advantage in ultrarapid scene categorization
observed by Joubert et al. (2007), and replicated and
extended here, could be explained using global scene
categorization mechanisms without the need to activate
semantic information from object recognition. By this
account, semantically inconsistent objects in scenes can
influence the global perceptual evidence diagnostic for
scene categorization without any explicit recognition of
consistent versus inconsistent objects contained within the
scene.
Consistent with this simple scene categorization account,

we presented evidence from a diffusion model analysis
that suggests a difference in the quality of the perceptual
evidence available from scenes containing consistent
versus inconsistent objects. Furthermore, we showed that
a Dynamic Scene Categorization Model, which couples a
scene categorization model based on global scene statis-
tics (Oliva & Torralba, 2001) with the diffusion model of
perceptual decision making (Ratcliff, 1978), accounts well
for the consistent-object advantage in both go/no-go and
2AFC decisions. Instead of distinct scene and object
recognition systems operating in parallel and competing
or cooperating for categorization through activation of
semantic information, the consistent-object advantage in

Figure 5. Simulation predictions for the go/no-go (top) and 2AFC
(bottom) variants of the dynamic scene categorization model.
Average accuracy (left) and correct response RTs (right) for
consistent (dark) and inconsistent (light) object scenes. Error bars
represented 95% confidence intervals of the comparison between
consistent- and inconsistent-object conditions.
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ultrarapid scene categorization of the sort reported by
Joubert et al. (2007) can be explained by a single scene
perception system that interprets the global visual proper-
ties found within scenes.
Our results are consistent with and extend the recent

findings on rapid scene perception (Greene & Oliva, 2009a,
2009b). With just a glance at a scene, global properties,
including their naturalness, are perceived rapidly even
before a scene’s basic-level category is determined or its
objects are recognized (Greene & Oliva, 2009b). These
global properties are captured by linear combinations of a
scene’s spatial frequency content (Greene & Oliva, 2009a;
Oliva & Torralba, 2001). Here, we find that the rapid
signal of a scene’s superordinate category of natural or
man-made as encoded by spatial frequency content is
modulated by the presence of a consistent or inconsistent
object; this modulation of visual information from objects
can interfere with decisions about a scene’s category. We
also extend the earlier work by Oliva and colleagues by
marrying their scene categorization model as a front-end
to a diffusion model of perceptual decision making,
resulting in a model that accounts well for both the
accuracy and time to rapidly categorize scenes. With the
growing interest in the temporal dynamics of object and
scene categorization, it is necessary to have computa-
tional models that can explain the time-course of those
decisions.
It is important to place our findings in their appropriate

context. We are not arguing that explicit recognition of
objects never matters for scene categorization. It goes
without saying that fully understanding the environments
we encounter during our everyday visual experience
requires successful object recognition. There is evidence
for semantic influences on scene categorization from
object recognition (e.g., Davenport & Potter, 2004) that
cannot be explained with the Dynamic Scene Categoriza-
tion model. For these effects, some kind of two-system
account of parallel object and scene perception interacting
through activation of relevant semantic information
remains a viable explanation. However, in the case of
ultrarapid “ultrasuperordinate” (natural vs. man-made)
scene categorization, we have shown that explicit repre-
sentation and recognition of objects in those scenes is not
necessary to account for an influence of consistent or
inconsistent objects. It is strikingVand not all that
intuitiveVthat global scene statistics alone can reflect
the presence of (semantically) consistent or inconsistent
objects within those scenes and that quantitative differ-
ences in those global scene statistics can explain the
observed quantitative differences in the consistency effect
for natural vs. man-made scenes.
Clearly, our demonstration is one of sufficiency and not

necessity. Further converging evidence is needed to
understand whether the mechanisms described in our
model underlie ultrarapid scene categorization in humans
more generally. One possibility is that ultrarapid ultra-
superordinate scene categorization is governed by the

processes instantiated in our model, but that more
deliberate finer-grained scene categorization is modulated
by interactions with explicit object recognition processes.
Alternative explanations for the original Joubert et al.

(2007) results are also possible. Since we explicitly
followed their experimental design, our article inherits
those alternative explanations as well. Following Joubert
et al., we used real images of scenes containing consistent
objects or inconsistent objects. While there are clear
benefits of using real images that preserve the range of
low-level image properties found in real world visual
experience, real images also engender a lack of control
that introduce potential confounds. In one sense, our work
demonstrates that these seemingly subtle visual confounds
are (perhaps surprisingly) sufficient to produce significant
differences in predicted behavior in ultrarapid scene
categorization. In that sense, our work provides a cau-
tionary tale, oft repeated, that relatively low-level visual
differences can lead to what might erroneously be ascribed
to relatively high-level semantic explanations.
One potential explanation for the difference between

consistent and inconsistent object in the real scenes used
by Joubert et al. (2007) and us is the factor of object
salience. Maybe consistent and inconsistent objects in
scenes simply differ in salience. Now, the term “salience”
is used often in visual science but it can mean different
things in different contexts by different investigators. Let’s
consider a couple possibilities. In Figure 1, the church in
the bottom left scene may simply be more salient than the
tree in the top left scene based solely on the low-level
visual properties of the objects. Of course, in order to
predict any kind of consistent-object advantage overall,
there would need to be a similar salience difference for
consistent and inconsistent objects across both natural and
man-made scenes. For example, all consistent objects in
man-made scenes would need to be more salient, on
average, than inconsistent objects in man-made scenes,
and all consistent objects in natural scenes would need to
be more salient, on average, than inconsistent objects in
natural scenes. Then the consistent-object advantage
would come about because consistent objects are more
salient, perhaps they are categorized quickly, and their
categorization supports and speeds up the scene catego-
rization. But maybe the salience difference goes the other
way. Perhaps it is inconsistent objects that are always
more salient in their respective scenes. Because the
inconsistent objects are more salient, their categorizations
are made quickly, and those categorizations interfere with
the categorization of the rest of the scene. An explicit
model that calculates image-based salience of objects in
scenes, uses that information to select objects for
categorization, and allows their categorization to interact
positively or negatively with a scene categorization would
need to be formalized in order to fully test this intriguing
alternative explanation.
Another relevant definition of salience is of an object

relative to its context. An inconsistent object appearing in
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natural or man-made scenes is simply more salient than
consistent objects in those same scenes (e.g., a car in a
natural scene is simply more salient than a tree in a natural
scene). A consistent-object advantage arises not because
of the presence of an inconsistent object, per se, but
because of the difference in salience that interferes with
the recognition process. In some ways, this explanation
can be recast as a restatement of our claim. Our model is
based on the assumption that a scene’s naturalness is
represented by a linear combination of global image
statistics. These global-based representations are influ-
enced to some extent by the objects found in scenes
suggesting that the stored representation for a natural
scene will be biased towards the visual properties of
objects typically found in natural scenes and likewise for
man-made scenes with man-made objects. The presence
of an inconsistent object in a scene shifts the scene’s
global representation away from the expected visual
regularities captured in the target representations. In this
sense, an inconsistent object in a scene ends up being
more salient in that it shifts the overall scene representa-
tion away from how it might be represented if the scene
did not contain that object.
In closing, evidence for interactions of object and scene

processing has been well known for many years (Biederman
et al., 1982; Friedman, 1979; Palmer, 1975), yet few formal
computational accounts of these effects have been pro-
posed. The Dynamic Scene Categorization model presents
a preliminary step in understanding the mechanisms
behind object and scene processing. This computational
model extends a current class of successful scene catego-
rization models to predict both response probabilities and
reaction times. This model offers a richer description of
scene categorization by accounting for the time course of
the perceptual decision, much in the tradition of some
object categorization models (e.g., Lamberts, 2000;
Nosofsky & Palmeri, 1997; Palmeri, 1997). Further
behavioral research and application of this model is
necessary to better understand the underlying mechanisms
of scene categorization and to characterize the relationship
between scene and object perception.

Appendix A

Table A1.
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Footnote

1We adopted the definition of consistency between
objects and scenes used in Joubert et al. (2007), which
may appear at odds with earlier studies of object/scene
consistency (e.g., Davenport & Potter, 2004; Palmer,
1975). Is a tree in a street scene actually inconsistent?
Here, consistency between an object and scene is defined
in reference to the relevant categories of the task being
performed. The Joubert et al. (2007) experiments (and
our replications and extension) asked participants to
categorize scenes as natural versus man-made. In this
sense, a tree (a natural object) is semantically inconsistent
with a street scene’s category (man-made).

Model
Variant

Diffusion parameter values

a Ter v

Go/No-Go
Natural

fixed .131 .369 .649
a .119, .132 .371 .620
Ter .133 .364, .373 .665
v .152 .360 .911, .725

Go/No-go
Man-made

fixed .340 .257 .839
a .352, .359 .271 .901
Ter .411 .290, .230 .779
v .431 .198 .873, .854

2AFC
Natural

fixed .151 .314 .728
a .141, .156 .317 .742
Ter .176 .320, .331 .965
v .179 .314 .991, .863

2AFC
Man-made

fixed .301 .208 .759
a .297, .302 .260 .602
Ter .332 .362, .370 .589
v .386 .166 .885, .860

Table A1. Best-fitting parameter values from the diffusion model
analyses for the four model variants fit to the behavioral data from
the two experiments (Go/No-Go and 2AFC) with natural and man-
made scenes as targets. Model variants are identified in the third
column by the parameter that was free to vary across the
consistent versus inconsistent condition. The two values for free
parameters associated with the consistent and inconsistent
conditions are shown within the same cell separated by a comma.
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