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Abstract 

Face recognition is thought to rely on holistic processing, 
where the entire face is processed as a single unitary object. 
The nature of this holism is often assumed to be perceptual, 
however recent work applying the General Recognition 
Theory (GRT) framework suggests that holistic processing of 
faces may arise from decisional factors. Using Monte Carlo 
simulations, we examined how known violations of GRT 
constructs relate to a behavioral measure of holism, the 
congruency effect, and found that both perceptual and 
decisional sources of holistic processing can give rise to 
significant congruency effects. We then explored whether a 
well-known model of face recognition, one that reproduces 
the congruency effect, would also reproduce the pattern of 
GRT results seen in human participants. Surprisingly, like 
humans, the model showed a consistent decisional locus of 
holistic processing. This was surprising because there is no 
explicit decisional component in the model that could give 
rise to this finding. This suggests that either the model 
contains some kind of implicit decisional component, or 
alternatively that there may problems with the techniques 
used to measure decisional versus perceptual holism from the 
perspective of GRT. 
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Introduction 
A key characteristic of face perception which sets it apart 
from regular object perception is that faces are said to be 
processed holistically. That is, the features which make up a 
face are not treated as independent parts, but rather the eyes, 
nose and mouth are fused together and treated as a whole. 
Typically, holistic processing of faces has been attributed to 
holism within the perceptual representation (e.g., Young, 
Hellawell & Hay, 1987; Hole, 1994), a perceptual fusion of 
the face parts during recognition, however it is also possible 
that important holistic effects may arise because of a form 
of holism within a decisional process (Wenger & Ingvalson 
2002, 2003).  

The purpose of this paper is to 1) explore how one 
behavioral measure of holism, the congruency effect, relates 
to either perceptual or decisional loci of holistic effects as 
defined within General Recognition Theory (GRT; Ashby & 
Townsend, 1986), and 2) determine whether one current 
model of face recognition, one that gives rise to congruency 
effects similar to those seen in humans, localizes holism as 
either perceptual or decisional using GRT measurement 
tools. Results will be related to recent human data that 
measures holistic processing both in terms of the 
congruency effect and in terms of GRT constructs. 

Behavioral Measure of Holism:  
The Congruency Effect 

Holism in face recognition has been measured behaviorally 
using a composite face task. This sequential matching task 
uses composite faces that are created by combining the top 
half of one face with the bottom half of another face. 
Participants study one composite face and then are tested on 
a second composite face after a brief delay. In one version 
of this paradigm, participants judge whether the top or 
bottom of a test face is the same or different as the study 
face; the cued part can be the same or different, and the 
irrelevant part can also be the same or different. Congruent 
trials are those in which the top and bottom are both the 
same or both different whereas incongruent trials are those 
in which one part is the same and the other part is different. 
Holism is inferred by a congruency effect, which is defined 
as better performance (measured in terms of d’) on 
congruent vs. incongruent trials. Significant congruency 
effects are seen with faces but not common objects. Even 
though participants are instructed to ignore the irrelevant 
part, it still affects their performance. One explanation of 
these results is that the irrelevant part cannot be ignored 
because the face is processed as a unitary perceptual whole 
(Farah, Wilson, Drain & Tanaka, 1998; Gauthier, Curran, 
Curby & Collins, 2003).  



In most studies that measure holism in terms of a 
congruency effect, only a single response is made to either 
the top or the bottom of the test face on every trial (e.g., 
Farah et al., 1998; Gauthier et al., 2003). However, a slight 
variation of this task requires participants to give a same-
different response to both the top and the bottom of the test 
face on every trial (Wenger & Ingvalson, 2002, 2003; 
Richler, Gauthier, Wenger, & Palmeri, submitted). This task 
produces similar congruency effects as the single-response 
version, but it also allows the data to be analyzed in terms of 
GRT constructs (described below) which distinguish 
between perceptual and decisional loci of holistic effects. 
For this reason, we will be referring to this version of the 
composite task in the remainder of the paper. 

General Recognition Theory 
According to classic signal detection theory, a participant’s 
response to a stimulus reflects both a perceptual process and 
a decision process. On each trial, the perceptual effect of a 
stimulus (output of the perceptual process) can be 
represented as a point in perceptual space. Because of 
perceptual noise, that perceptual effect varies over trials, 
resulting in a probability distribution of percepts, which is 
commonly assumed to be normal. Discriminability between 
stimuli is reflected by the distance between perceptual 
distributions. Responses – and response biases – are 
determined by where a percept lies in relation to a decision 
criterion placed between the distributions.  

Signal detection theory can readily be applied to 
performance in a sequential same-different task. But in this 
case, there is a percept of the first stimulus, a percept of the 
second stimulus, and a comparison process that computes a 
measure of similarity between the first and second stimulus. 
Consider a simple face matching task, where the participant 
studies one face and is tested on a second face, and simply 
needs to judge whether the two faces are the same or not. 
There would be one distribution for “same” trials and one 
distribution for “different” trials. A response criterion would 
determine whether the participant responds “same” or 
“different”. The proportion of hits (i.e., responding “same” 
when the correct response is “same”) and false alarms (i.e., 
responding “same” when the correct response is “different”) 
are used to calculate both d’, which measures 
disciminability between “same” and “different” trials, and 
the response criterion, which reflects response biases. In 
order to generalize this analysis to the sequential composite 
face paradigm that is of interest to us, we need a 
multidimensional analysis that can reflect the same-different 
status of both the top part and the bottom part.  

General Recognition Theory (GRT; Ashby & Townsend, 
1986) is a multidimensional generalization of classic signal 
detection theory. Stimuli give rise to percepts drawn from 
multivariate normal distributions. Responses are determined 
by decision boundaries separating these distributions. 
Within this framework, holism can be described as having a 
perceptual locus, by violations of Perceptual Independence 
(PI) or violations of Perceptual Separability (PS), or as 

having a decisional locus by violations of Decisional 
Separability (DS). Each of these constructs and how they 
can be violated are illustrated in Figure 1. 

Two stimulus dimensions are perceptually independent 
when the perceptual effect of one dimension (or part) is 
statistically independent of the perceptual effect of another 
dimension (or part). If faces exhibit PI, then variability in 
the perceived sameness of the top part would be 
uncorrelated with variability in the perceived sameness of 
the bottom part. This is illustrated by the circular contours 
of equal likelihood in Figure 1a (left). PI is violated when 
there is covariance between the perceptual dimensions, 
resulting in the tilted ellipses seen in Figure 1a (middle). In 
other words, variability in the judged sameness of the top 
and bottom parts would be correlated with one another. 
Unlike some of the other violations to be discussed, PI is 
considered a within-stimulus effect; some intrinsic property 
of perceptual processing gives rise to correlated noise across 
the two parts of the face. Because of this, a violation of PI 
has been considered to be the strongest form of holism 
within the GRT framework (Wenger & Ingvalson, 2002). 

Perceptual distributions are perceptually separable when 
the perception of one dimension is independent of the level 
of the other dimension. If faces exhibit PS, then the 
perceived sameness of the top part would be unaffected by 
whether the bottom part is the same or different. As shown 
in Figure 1b (left), this can be illustrated by connecting the 
centers of the four perceptual distributions into a rectangle. 
PS is violated when the perception of one part of the 
stimulus depends on the level of the other part. As shown in 
Figure 1b (middle), this can be illustrated when the 
connected perceptual distributions form a non-rectangular 
quadrilateral. If faces violate PS, there may be differences in 
the degree of sameness for face bottoms when the tops are 
the same compared to when the tops are different. 

Finally, responses to each part of the stimulus are 
decisionally separable when the location of the bound for 
decisions about one dimension is not affected by the level of 
the other dimension. If DS applies to faces, then the 
boundary established for decisions about the top part is in 
the same location irrespective of whether the bottom part is 
the same or different. As shown in Figure 1c (left), this can 
be illustrated by linear decision bounds that are parallel to 
dimensional axes. Also as shown in Figure 1c (middle), 
when DS is violated, the location of the decision bound for 
one part depends on the other part. If faces violate DS, the 
location of the criterion to say whether bottoms are the same 
or different may vary based on whether the top is the same 
or different. 

Simulations Relating Violations of GRT 
Constructs With the Congruency Effect 

Recall that the standard measure of holistic processing, the 
congruency effect, is often attributed to a perceptual form of 
holism. But within GRT, holism could be perceptual 
(violations of PI or PS) or decisional (violations of DS). Are 
congruency effects sensitive to these violations? If the 



Figure 1. (a) PI (left), a violation of PI and how PI was manipulated in the simulations (middle) and results of the simulations for PI 
(right). (b) PS (left), a violation of PS and how PS was manipulated in the simulations (middle) and the results of the simulations of PS 
(right). (c) DS (left), a violation of DS and how DS was manipulated in the simulations (middle) and the results of the simulations (right).

congruency effect can only arise due to violations of PI or 
PS, or only arise due to violations of DS, GRT constructs 
tell us little more than what is already measured by 
congruency effects, because the congruency effect on its 
own would be exclusively linked to a perceptual or 
decisional locus of holistic processing. However, if 
congruency effects can be produced by violations of any of 
these constructs, then analyzing data using GRT constructs 
could prove to be a more powerful analytic tool for 
understanding the nature of holistic processing of faces. 

To answer these questions, we performed a series of 
Monte Carlo simulations where we systematically violated 
PI, PS, and DS and examined the congruency effect that 
emerged in each simulation. The middle column of Figure 1 
illustrates how each of the GRT constructs was 
manipulated. We assumed a multivariate distribution for 
each of the combinations of same or different top with same 
or different bottom of the test face. PI was systematically 
manipulated by varying the correlation (rho) between the 
two dimensions in the covariance matrix (Ashby, 1992); 
when there is a zero correlation, there is no violation of PI. 
“Squareness” of the configuration of perceptual dimensions 
(theta) was varied to systematically manipulate PS; when 
theta is set to 45 degrees the arrangement of the 
distributions is a square and there is no violation of PS. We 

systematically manipulated DS by changing the 
orthogonality of the decision bounds to the dimensional 
axes (phi); when phi is set to 0, the decision bounds are 
orthogonal to the coordinate axes and there is no violation 
of DS. We also manipulated the variance (var) along the two 
perceptual dimensions, but this parameter simply acts as a 
scaling term and has no qualitative effect. Each GRT 
construct was investigated independently; for example, if 
we were examining a violation of PI with rho set to .5, we 
assumed no violation of PS (theta = 45) and no violation of 
DS (phi = 0).  

For each set of parameters, we ran a total of 4000 
simulated trials. On each trial, we randomly selected one of 
the four multivariate normal distributions, and then 
randomly drew a sample from that distribution. The 
response for each trial was determined based on where the 
sample was located with respect to the decision boundaries. 
Responses could then be characterized as hits (correctly 
responding “same”) or false alarms (responding “same” 
when the correct response is “different”). The proportion of 
hits and false alarms were used to calculate d’ for congruent 
trials (both parts “same” or both parts “different”) and 
incongruent trials (one part “same” and one part 
“different”). The magnitude of the congruency effect is the 
difference between d’ for congruent and incongruent trials.  



The right column of Figure 1 summarizes the results of 
the simulations of violations of each of the three GRT 
constructs. Each graph plots the magnitude of the 
congruency effect as a function of the value of the 
systematically manipulated parameter for that simulated 
violation. Each line represents a different value of the 
dimensional variance (var). 

As shown by the flat line in the top graph of Figure 1, no 
violation of PI produces a congruency effect. This is 
particularly surprising given that a violation of PI is 
considered to be the strongest form of holism. If holistic 
processing of faces occurs due to violations of PI, this 
cannot be detected by measuring the congruency effect. 

Violations of PS and DS, on the other hand, both produce 
congruency effects, as shown by the increasing lines in the 
middle and bottom graphs in Figure 1. When PS is violated, 
the magnitude of the congruency effect increases as the 
configuration becomes less square-like (i.e., as theta 
increases). When DS is violated, the magnitude of the 
congruency effect increases as the decision bounds become 
less orthogonal to the dimensional axes (i.e., as phi 
increases in magnitude).  

Violations of PS indicate perceptual holism and violations 
of DS indicate a decisional locus of holism. However, these 
simulations show that a congruency effect can arise due to 
either violations of PS and DS. Therefore, the congruency 
effect on its own cannot distinguish between perceptual and 
decisional sources of holism as defined by GRT. 

Behavioral Data: GRT 
Conclusions about the GRT constructs can be derived from 
human data using an analysis technique called 
Multidimensional Signal Detection Analysis (MSDA; 
Kadlec & Townsend, 1992; Kadlec, 1995), which draws 
conclusions about violations of PI, PS and DS based on a 
number of measures, including what are known as marginal 
and conditional d’ and c values. The values are calculated 
from the complete confusion matrix of data obtained when 
participants make same-different judgments about both the 
top and the bottom half of the face. We very briefly describe 
some of the main components of MSDA, but the reader is 
referred to Kadlec & Townsend (1992) for complete details 
of the theory underlying the statistical tests involved in 
MSDA, and to Kadlec (1995) for complete details of the 
MSDA program we used to perform these analyses. 

Marginal tests compare d’ or c values between each level 
of one dimension collapsed across both levels of the other 
dimension. For example, for a composite face task, one 
marginal test would compare d’ for same vs. different tops 
collapsed across same and different bottoms. PS is violated 
when there is a difference in d’ for one part based on 
whether the other part is the same or different. DS is 
violated if there is a difference in c for one part based on 
whether the other part is the same or different. 

Conditional analyses compare d’ and c for each 
dimension at a given level of the other dimension, based on 
whether the response to the other dimension was correct or 

incorrect. For example, in a composite face task, one 
conditional test compares the criterion for a bottom decision 
when the top is the same and the response is correct versus 
the criterion for a bottom decision when the top is same and 
the response was incorrect. Whether the response is correct 
or incorrect depends on the location of the decision bounds 
as well as the location and shape of the perceptual 
distribution. Therefore, if the conditional analyses reveal 
violations of DS (as shown by differences in conditional c 
values), one cannot make conclusions about PI, because 
differences in conditional d’ may be due to violations of DS, 
rather than violations of PI (Ashby & Townsend, 1986).  

Recent behavioral work that examined holistic processing 
for faces with respect to the GRT constructs using the 
MSDA program showed that DS was consistently violated 
in a composite face task, while PS was inconsistently 
violated, and PI was rarely violated (Wenger & Ingvalson, 
2002, 2003; Richler et al., submitted). Moreover, it has also 
been shown that changes in the congruency effect due to 
stimulus manipulations are linked to changes in marginal c, 
but not marginal d’, values (Richler et al., submitted). In 
other words, although the Monte Carlo simulations 
described earlier show that violations of either PS or DS 
could give rise to a congruency effect, the analysis of the 
human data using MSDA suggest that it is violations of DS 
that play a dominant role in producing this effect in a 
composite face task.  

Measuring Holism in one Model of  
Face Recognition 

Because the Monte Carlo simulations showed that 
congruency effects can arise from violations of either PS or 
DS, face recognition models that account for congruency 
effects need not produce the same pattern of GRT violations 
as human observers. Thus, the GRT framework presents an 
opportunity to further evaluate existing face recognition 
models beyond the congruency effect. 

In this paper, we examined one well-known model of face 
recognition (Cottrell, Branson, & Calder, 2002; Dailey & 
Cottrell, 1998). Our intent was not to particularly criticize 
this model; this model has accounted for a far wider range 
of important object recognition, face perception, and 
expertise phenomena than just about any extant model in the 
field. Instead, our intent was to illustrate that models of face 
recognition must also account for regularities in the human 
data that are revealed using MSDA; new work will examine 
other models of face recognition. To be clear, GRT may not 
be the correct underlying model of face recognition; in fact, 
GRT is a framework and by itself cannot be a complete 
model of face recognition or any other kind of object 
recognition. But the measures afforded by MSDA and GRT 
can provide more stringent measures of holistic processing 
in humans and models.   

Our simulations closely follow the simulations presented 
in Cottrell et al. (2002) and Nguyen and Cottrell (2005), so 
we only briefly summarize them here. As shown in Figure 
2, the model by Cottrell and colleagues first preprocesses 



face images through a bank of two-dimensional Gabor 
filters of different scales and orientations, the Gabor-filtered 
image is then represented by a vector of principal 
components (defined by a PCA from a different collection 
of faces), and then is classified by a two-layer neural 
network trained using back propagation. 

 

 
 
Figure 2: Model schematic adapted from Dailey, Cottrell, 

Padgett, & Adolphs (2002). 
 
The training procedure was carried out in the following 

manner:  the training sets consisted of twenty different face 
composites with five different exemplars of each face 
(created by jittering the composites by +/- 2 pixels in one or 
both of image dimensions). The training set was first used to 
generate the PCA layer representation. The model was next 
trained for fine-level discrimination by learning to identify 
the face composites with a unique name. This involved 
learning the weights between the PCA layer and the hidden 
layer and the weights between the hidden layer and the 
name layer via back-propagation.  

To compare the model to the human data, the model had 
to simulate all key elements of the composite face task with 
same or different responses to both the top and bottom 
halves. Doing this involved just a simple elaboration of the 
approach Cottrell et al. (2002) used in their initial 
simulations of the task that demonstrated the model’s 
account of the congruency effect. Each trial consisted of 
passing a study face through the model and saving in 
memory the representation of this face at the hidden layer of 
the model’s neural network (this is akin to some form of 
visual working memory). As with the task used with human 
observers, the test face could have both parts the same as the 
study face, one part the same and one part different, or both 
parts different. Following Cottrell et al. (2002), attention to 
the cued part (top or bottom) was simulated by attenuating 
the Gabor layer representation of the to-be-ignored face half 
by a factor of 0.125. The correlation between the hidden 
layer representation of the study phase and the hidden layer 
representation of the test faces was used to generate a same 
or different response (to that half) by comparing that 
correlation with a criterion. Correlations higher than the 
criterion yield “same” responses, those lower than the 
criterion yield “different” responses. The process was 
repeated for the other half in order to generate the other 
same/different response. The testing stage consisted of one 
hundred trials each with a different study face.   

Ten separate sets of training and testing faces were 
created and passed through the model with different random 
initial weights in the neural network of the model for each 

set. The correlation data for each model repetition was then 
used for calculating probability distributions for the 
different responses allowing for MSDA.  

Comparing the Model with Human Observers 
Like human observers, the model produces a significant 
congruency effect, whereby d’ is higher on congruent trials 
(when both parts are the same or different) than incongruent 
trials (when one part is the same as the other part is 
different).  Also similar to human observers, when the top 
and bottom parts of the test image are misaligned, this 
congruency effect diminishes (see top Figure 3).  This is 
exactly what Cottrell et al. (2002) reported. What about the 
MSDA analyses? 

The qualitative marginal analyses revealed consistent 
violations of DS and very few violations of PS in the ten 
simulations of the model. This matches human data, where 
DS is always violated and PS is violated in some cases but 
not in others (Wenger & Ingvalson, 2002, 2003; Richler et 
al., submitted).  

Although the qualitative results are informative, a more 
rigorous comparison of the model and human observers is 
available when we examine the quantitative measures used 
to make these qualitative statements. Recall that in the 
marginal analyses a violation of PS or DS occurs when there 
is a significant difference in d’ or c, respectively, based on 
whether the other part is the same vs. different.  Richler et 
al. (submitted) found that stimulus manipulations that 
changed the congruency effect for human observers also 
changed marginal c values, but not marginal d’ values.  
According to MSDA, this suggests violations of DS as a 
source of holistic processing. We performed the same 
comparisons with the model simulations. Specifically, we 
compared the change in the congruency effect produced by 
the model under the different levels of stimulus alignment 
with the marginal d’ and c values from the MSDA output. 
The averages of these values are plotted in Figure 3.  

The congruency effects produced by the model for the 
three levels of alignment are shown in the top graph of 
Figure 3.  Marginal d’ values, which reveal violations of PS  

 

Figure 3.  Congruency effect (top), marginal d’ values 
(bottom left), and marginal c values (bottom right) for the 
model. Error bars show 95% confidence intervals. 



for the model are plotted in the bottom left, and marginal c 
values, which reveal violations of DS, are plotted in the 
bottom right.  The model was able to produce the same 
pattern of results reported by Richler et al. with human 
observers. That is, marginal d’ values were unaffected by  
misalignment. However, marginal c values were affected by 
misalignment such that differences in marginal c values 
based on the same-different status of the other part 
decreased with misalignment. The correspondence between 
the decrease in the congruency effect and the decrease in the 
differences between marginal c values could certainly 
suggests that violations of DS play a dominant role in the 
holistic processing effects seen in the composite task for this 
model. Critically, these results are consistent with findings 
from human observers.    

Conclusions 
The first goal of this paper was to relate a behavioral 
measure of holism used in a composite face task with 
measures of holism based on GRT that distinguish between 
perceptual  and decisional loci of holistic effects. The results 
of the Monte Carlo simulations showed that while violations 
of PI – the “strongest” form of holism – do not lead to any 
congruency effect, both violations of PS (perceptual holism) 
and violations of DS (decisional holism) lead to significant 
congruency effects. The congruency effect is a rather coarse 
measure of holism in that it cannot distinguish between 
perceptual and decisional sources of holistic effects. 

The second goal of this paper was to examine how one 
well-known face recognition model, one that accounts well 
for the congruency effect, would compare with human 
observers in terms of the measures of holism provided by 
MSDA. As is seen with human data, the model showed 
consistent violations of DS. This was very surprising as 
there is no explicit decisional component in the model that 
could obviously lead to this finding. This suggests that 
either the model contains some kind of implicit decisional 
component, or, alternatively, this indicates that the values 
derived using MSDA do not necessarily reflect the 
decisional sources of holism defined by GRT. We are 
currently exploring both possibilities.  

We conclude that 1) behavioral work that seeks to explain 
holistic processing of faces needs to use measures that are 
more sensitive to the distinction between perceptual and 
decisional sources of holism, such as MSDA, and 2) a more 
thorough investigation of MSDA and how it relates to GRT 
is required. 
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