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Significant insights into visual cognition have come from studying real-world perceptual
expertise. Many have previously reviewed empirical findings and theoretical developments
from this work. Here we instead provide a brief perspective on approaches, considerations,
and challenges to studying real-world perceptual expertise.We discuss factors like choosing
to use real-world versus artificial object domains of expertise, selecting a target domain
of real-world perceptual expertise, recruiting experts, evaluating their level of expertise,
and experimentally testing experts in the lab and online. Throughout our perspective, we
highlight expert birding (also called birdwatching) as an example, as it has been used as a
target domain for over two decades in the perceptual expertise literature.
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INTRODUCTION
In nearly every aspect of human endeavor, we find people who
stand out for their high levels of skill and knowledge. We call
them experts. Expertise has been studied in domains ranging
from chess (Chase and Simon, 1973; Gobet and Charness, 2006;
Connors and Campitelli, 2014; Leone et al., 2014) to physics
(Chi et al., 1981) to sports (Baker et al., 2003). Perceptual
experts, such as ornithologist, radiologists, and mycologists,
are noted for their remarkable ability to rapidly and accu-
rately recognize, categorize, and identify objects within some
domain. Understanding the development of perceptual exper-
tise is more than characterizing the behavior of individuals with
uncanny abilities. Rather, if perceptual expertise is the end-
point of the trajectory of normal visual learning, then studying
perceptual experts can provide insights into the general princi-
ples, limits, and possibilities of human learning and plasticity
(e.g., Gauthier et al., 2010).

Several reviews have highlighted empirical findings and
theoretical developments from research on perceptual exper-
tise in various modalities (for visual expertise, see, e.g.,
McCandliss et al., 2003; Palmeri and Gauthier, 2004; Palmeri and
Cottrell, 2009; Richler et al., 2011; for auditory expertise, see,
e.g., Chartrand et al., 2008; Holt and Lotto, 2008; for tactile
expertise, see, e.g., Behrmann and Ewell, 2003; Reuter et al.,
2012). Here, we instead highlight more practical considera-
tions that come with studying perceptual expertise; we highlight
visual expertise because this modality has been most exten-
sively studied. We specifically consider some choices that face
researchers: whether to use real-world or artificial objects, what
domain of perceptual expertise to study, how to recruit par-
ticipants, how to evaluate their expertise, and whether to test
in the lab or via the web. Throughout our perspective, we
use birding as an example domain because it has been com-
monly used in the literature (e.g., Tanaka and Taylor, 1991;
Gauthier et al., 2000; Tanaka et al., 2005; Mack et al., 2007;
Mack and Palmeri, 2011).

REAL-WORLD vs. ARTIFICIAL DOMAINS OF EXPERTISE
Expertise-related research has been conducted using both artificial
and real-world objects. Artificial objects include simple stimuli
like line orientations, textures, and colors (e.g., Goldstone, 1998;
Mitchell and Hall, 2014), and relatively complex novel stimuli
like random dot patterns (Palmeri, 1997), Greebles (Gauthier and
Tarr, 1997; Gauthier et al., 1998, 1999), and Ziggerins (Wong et al.,
2009a). Real-world objects include birds, dogs, cars, and other
categories (Tanaka and Taylor, 1991; Gauthier et al., 2000). Studies
using artificial objects are often training studies, where researchers
recruit novices and train them to become “experts” in a domain.
Changes in behavior or brain activity are measured over the course
of training to understand the development of expertise, making
these studies longitudinal. The weeks of training used in these
studies can only be a proxy for the years of experience in real-world
domains. Because real-world expertise takes so long to develop,
most real-world studies are cross-sectional.

An advantage of training studies with artificial objects is
the power to establish causality. Experimenters have precise
control over properties of novel objects, relationships between
them, and how categories are defined (e.g., Richler and Palmeri,
2014). Participants can be randomly assigned to conditions and
training and testing can be carefully controlled. As one exam-
ple, Wong et al. (2009a,b) used novel Ziggerins and trained
people in two different ways, one of which mirrored individu-
ation required for face recognition, another of which mirrored
the letter recognition demands required for reading. Accord-
ingly, the face-like training group showed behavior and brain
activity similar to that seen in face recognition while the
letter-like training group showed behavior and brain activity
similar to that seen in letter recognition. Studies of artifi-
cial domains of expertise can provide insights into real-world
domains.

If researchers are interested in understanding what makes
experts experts, not just investigating limits of experience-
related changes, then it is important to complement carefully
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controlled laboratory studies using artificial domains with the
study of real-world experts. Because of their quasi-experimental
nature – recruiting novices and those with varying levels of exper-
tise as they occur in the real world – these studies cannot establish
unambiguous causal relationships between expertise and behav-
ioral or brain changes. Apart from considerations of external
validity, studies of real-world experts permit the study of a range
and extent of expertise that cannot easily be reproduced in the
laboratory. And practically speaking, testing real-world percep-
tual experts on real-world perceptual stimuli saves researchers the
effort and expense needed to train participants in an artificial
domain.

Studies using real-world domains also come full circle to inform
studies using artificial domains. For example, consider the classic
result of Tanaka and Taylor (1991), reproduced in our own online
replication in Figure 1. Bird experts categorized birds (their expert
domain) and dogs (their novice domain). For novices (Rosch et al.,
1976), objects are categorized faster at a basic level (dog) than a
superordinate (animal) or subordinate level (blue jay), while for
experts (Tanaka and Taylor, 1991; Johnson and Mervis, 1997),
objects are categorized as fast at a subordinate level as a basic level.
This entry-level shift (Jolicoeur et al., 1984; see also Tanaka et al.,
2005; Mack et al., 2009; Mack and Palmeri, 2011) has been used
as a behavioral marker of expertise in training studies employing
artificial domains (Gauthier et al., 2000; Gauthier and Tarr, 2002).

Our group recently reviewed considerations that factor into
studies using artificial domains (Richler and Palmeri, 2014), so
here we focus on real-world domains for the remainder of our
perspective.

DOMAINS OF REAL-WORLD PERCEPTUAL EXPERTISE
In addition to everyday domains of perceptual expertise, like faces
(Bukach et al., 2006) and letters (McCandliss et al., 2003), stud-
ies have used domains ranging from cars and birds (Gauthier
et al., 2000), where expertise is not uncommon, to more spe-
cialized and sometimes esoteric domains like latent fingerprint
identification (Busey and Parada, 2010; Dror and Cole, 2010),
budgie identification (Campbell and Tanaka, 2014), and chick
sexing (Biederman and Shiffrar, 1987). The particular choice of
expert domain depends on a combination of theoretical goals and
practical considerations.

For example, consider a goal of understanding how the abil-
ity to categorize at different levels of abstraction changes with
perceptual expertise (Mack and Palmeri, 2011), which impacts
understanding of how categories are learned, represented, and
accessed. Birding is a useful domain because birders must make
subordinate and sub-subordinate categorizations, sometimes at a
glance, and often under less than ideal conditions with poor light-
ing and camouflage. Other kinds of bird experts have different
skills: budgie experts (a budgerigar is a bred parakeet) can keenly
identify unique individuals in cages, but need not have expertise
with other birds, while professional chick sexers can quickly dis-
criminate male from female genitalia on chicken hatchlings. In
an entirely different domain, fingerprint experts typically match
latent prints with a known sample, with both clearly visible, pre-
sented side by side, and with time limits imposed by the analyst,
not the environment.

FIGURE 1 | Mean correct categorization response times for a novice

domain (dogs) and an expert domain (birds) measured online.

Following Tanaka and Taylor (1991), bird experts were tested in a speeded
category verification task where they categorized images at the
superordinate (animal ), basic (bird or dog), or subordinate (specific species
or breed) level. In their novice domain (dogs), a classic basic-level
advantage was observed, whereby categorization at the basic level was
significantly faster than the superordinate (t22 = 2.67, p = 0.014) and
subordinate level (t22 = 6.75, p < 0.001). In their expert domain (birds),
subordinate categorization was as fast as basic-level categorization
(t22 = 0.81, p = 0.429). This replication was conducted using an online
Wordpress + Flash custom website with only 23 participants from a single
short 10 min experimental session. Error bars represent 95% confidence
intervals on the level × domain interaction.

There are real-world consequences for studying certain
domains of perceptual expertise, such as latent fingerprint exam-
ination. Despite the widespread use of forensic evidence – as well
as its popular depiction on television – a recent National Research
Council of the National Academy of Sciences (2009) noted a
“dearth of peer-reviewed, published studies establishing the sci-
entific bases and validity of many forensic methods,” especially
those methods that require subjective visual pattern analysis and
expert testimony. That scientific evidence is emerging, especially
in the case of latent fingerprint expertise (e.g., Busey and Parada,
2010; Busey and Dror, 2011).

The choice of domain can also be influenced by various prac-
tical considerations. It is easier to study perceptual expertise in
a domain with millions of possible participants than an esoteric
domain with a few isolated members. It is easier to study a domain
where relevant stimuli are widely available in books and online.
And it is easier to study a domain without barriers to contact,
which can be the case for experts in the military, homeland security,
and certain professions. For example, studies of expert baggage
screeners require coordination with the Transportation Security
Administration (TSA) and many details regarding stimuli and
procedures cannot be shared with the public (e.g., Wolfe et al.,
2013). In the case of birding, there are millions of people in the
US alone who consider birding a hobby, spending hours in their
yards and parks, and billions on books, equipment, and travel (La
Rouche, 2006). Photos of birds are widely available; books have
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been published on particularly difficult bird identifications (e.g.,
Kaufman, 1999, 2011). Birders regularly participate in citizen sci-
ence efforts, such as the Christmas bird count and provide data on
bird sightings to databases like ebird.org. Anecdotally, this trans-
lates into a keen interest in science and a willingness to participate
in research.

RECRUITING
In the past, experts usually had to be recruited locally, with
advertisements posted around a university campus and in local
newspapers. It may be hard for some to remember that it has only
been in the past several years that not having an email address has
become almost equivalent to not having a phone number, and that
only recently has it become the case that most people have some
Internet access. Being able to recruit participants more widely via
the Internet promises not only to increase heterogeneity of par-
ticipants, but also, and especially relevant for expertise research,
promises to locate participants with a far greater range of exper-
tise than might be possible when recruiting in a local geographic
region.

One rapidly exploding means of recruiting and testing (see
“Testing”) participants is Amazon Mechanical Turk (AMT). AMT
allows hundreds of subjects to be easily recruited and tested in a
matter of days; participants on AMT are more demographically
diverse than typical American college samples (Buhrmester et al.,
2011). This diversity is important for research examining individ-
ual differences in perception and cognition. While the potential
population of AMT workers is large, it is unknown how many
with high levels of domain expertise might be workers on the plat-
form. For expertise research, recruitment via AMT may need to be
supplemented by more direct recruitment of true domain experts
(e.g., Van Gulick, 2014).

Large domains of expertise have organizations, web sites,
blogs, and even tweets and Facebook updates that target par-
ticular individuals. In principle, online recruiting through these
channels offers a quick, easy, and inexpensive means of finding
experts. These could involve paid advertisements online and in
electronic newsletters. More directly, these could involve mes-
sages sent to email lists. The biggest challenge to this, however,
is that many professional organizations or workplaces would
rarely allow, and many outright prohibit, direct solicitation of
members or employees, even for basic research; researchers can-
not directly contact TSA baggage screeners or latent fingerprint
examiners. By comparison, birding organizations, including local
Ornithological and Audubon Societies, whose members join
as part of a hobby, not a profession, can be less restrictive
in terms of allowing contact with members, so long as con-
tact is non-intrusive. In our case, we have identified several
hundred birding groups in the US and Canada, we have con-
tacted several dozen directly, and have received permission to
solicit volunteer participants from most, having so far tested
several hundred birders with a wide range of experience and
expertise.

EVALUATING LEVELS OF PERCEPTUAL EXPERTISE
How do we know someone is a perceptual expert? A simple
approach relies on subjective self-rating, often supplemented by

self-report on the amount of formal training, years of expe-
rience, or community reputation. For example, bird experts
in Tanaka and Taylor (1991) were recommended by mem-
bers of bird-watching organizations and had a minimum of
10 years of experience, and those in Johnson and Mervis
(1997) led birding field trips and some had careers related to
birding.

It is now well-recognized that self-reports of expertise are insuf-
ficient and that objective measures of expert performance are
needed (e.g., Ericsson, 2006, 2009); self-report measures of per-
ceptual expertise are not always good predictors of performance
(e.g., McGugin et al., 2012; Van Gulick, 2014). Therefore, recent
work has used quantitative measures to assess expert abilities (e.g.,
see Gauthier et al., 2010). A detailed review and discussion of such
measures is well beyond the scope of a brief perspective piece.
A variety of quantitative measures of perceptual expertise have
been used and new measures are currently being developed – these
efforts to develop and validate new measures reflect a quickly grow-
ing interest in exploring individual difference in visual cognition
(e.g., Wilmer et al., 2010; Gauthier et al., 2013; Van Gulick, 2014).

While expert-novice differences are sometimes loosely
described as if they were dichotomous, it is self-evident that
expertise is a continuum, people vary in their level of exper-
tise, and any measure of expertise must place individuals along
a (perhaps multidimensional) continuum. Some behavioral or
neural markers might distinguish pure novices from those with
some experience but asymptote at only an intermediate level
of expertise, while other behavioral or neural markers might
distinguish the true experts from more middling experts and
novices. Understanding the continuum of behavioral and brain
changes, whether they are asymptotic, monotonic, or even
non-monotonic over the continuum of expertise, can have
important implications for understanding mechanistically and
computationally how perceptual expertise develops (e.g., see
Palmeri et al., 2004).

Briefly, one useful measure has focused on the perceptual
part of perceptual expertise: using a simple one-back match-
ing task, images are presented one at a time and participants
must say whether consecutive pictures are the same or differ-
ent. Experts have higher discriminability (d′) on images from
their domain of expertise relative to non-expert domains, and
this difference predicts behavioral and brain differences (e.g.,
Gauthier et al., 2000; Gauthier and Tarr, 2002). Another mea-
sure has focused on memory as an index of perceptual expertise:
the Vanderbilt Expertise Task (VET; McGugin et al., 2012) mir-
rors aspects of the Cambridge Face Memory task (Duchaine and
Nakayama, 2006). Participants memorize exemplars from sev-
eral different artifact and natural categories and then recognize
other instances under a variety of conditions, and these differ-
ences in memory within particular domains predict behavioral
and brain differences (e.g., McGugin et al., 2014). With our inter-
est in categorization at different levels of abstraction, in work in
preparation, we have developed a measure that has focused on
categorical knowledge in perceptual expertise: adapting common
psychometric approaches, we are refining what could essentially
be characterized as an Scholastic Assessment Test (SAT, a stan-
dardized test widely used for college admission in the United
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States) of birding knowledge, with multiple-choice identifications
of bird images ranging from easy (common backyard birds like
the Blue Jay), to intermediate (distinctive yet far less common
birds, like the Pileated Woodpecker or Great Kiskadee), to quite
difficult identifications that even fairly expert birders find diffi-
cult (like discriminating Bohemian from Cedar Waxwing, Hairy
from Downy Woodpecker, or correctly identifying the many
extremely similar warblers, sparrows, or flycatchers). Future work
must consider to what extent different measures of perceptual
expertise capture the same dimensions of expert knowledge and
predict the same behavioral and brain measures that vary with
expertise.

TESTING
Laboratory testing allows careful control and monitoring of
performance, permits experiments that require precisely-timed
stimulus presentations, and of course allows sophisticated behav-
ioral and brain measures like eye movements, fMRI, EEG, and
the like. But laboratory testing incurs a potential cost in that
the number of laboratory participants is often limited due to the
expense of subject reimbursement, personnel hours, lab space,
and equipment. And for any study of unique populations who
might be geographically dispersed, such as perceptual experts, the
cost of bringing participants to the laboratory can be prohibitively
expensive.

Until fairly recently, the only real methods for testing partic-
ipants from a wide geographic area, apart from having experi-
menters or participants travel, was to have the experiments travel.
For simple studies, this could mean mailed pencil-and-paper tests,
while for more sophisticated studies, this could mean sending
disks or CDs to participants to run on a home computer (e.g.,
Tanaka et al., 2010). As anyone who programs well knows, getting
software to run properly on a wide range of computer hardware
and operating system versions can be a daunting task. In the past
few years, it has become popular, and wildly successful, to have
experiments run via a web browser. While not entirely immune to
the vagaries of hardware and operating system versions, browser-
based applications are often more robust to significant variation,
and can often automatically prompt users for upgrades to requisite
software plug-ins.

There are multiple platforms and approaches to online web-
based experiments. One approach, highlighted earlier, uses AMT.
In AMT, researchers publish Human Intelligence Tasks (HITs) that
registered workers can complete in exchange for modest monetary
compensation. AMT integrates low-level programming tools for
stimulus creation, test design, and programming into one web-
based application; other elements in AMT include automated
compensation, recruitment, and data collection. Aside from the
availability of these tools, a clear advantage of AMT is the poten-
tial to recruit from a large and diverse pool of participants. An
alternative approach is to develop and support a custom web-
based server for experiments. There are powerful tools for creating
web pages, such as Wordpress (wordpress.org), and fairly sophis-
ticated programs can be developed in Adobe Flash or Javascript
(e.g., De Leeuw, 2014; Simcox and Fiez, 2014). Perhaps an advan-
tage of such custom portals is that people may be more attracted
to them because of their interest in participating in research, not

because of the potential to earn money, as might sometimes be
the case for AMT. In the end, we suspect that most labs will
use a combination of both platforms for recruiting, testing, or
both.

At least given current computer hardware in wide use, a
potential vexing problem for web-based experiments is tim-
ing. Fortunately, platforms such as Flash and Javascript run
on the local (participant) computer, so properly-designed pro-
grams can avoid problems that could be introduced by variability
in Internet connection speeds. Thankfully, reasonable response
time measurements can be obtained (Reimers and Stewart, 2007;
Crump et al., 2013; Simcox and Fiez, 2014). Indeed, as illus-
trated in Figure 1, we have successfully observed differences
in RTs for expert and novice domains in online experiments
using a Wordpress + Flash environment that mirror observations
of expert speeded categorization from classic laboratory studies
(Tanaka and Taylor, 1991). Unfortunately, the most critical lim-
itation for now concerns stimulus timing. It is well known that
LCD monitors in wide use have response characteristics far too
sluggish to permit the kind of “single-refresh” presentations that
would have been possible on previous CRTs. While presentation
times of 100 ms or more are probably a safe bet, anything faster
would require calibration to check that a participant had a suffi-
ciently responsive monitor; it may be that the next generation of
LCD, LED, or other technologies will (hopefully) eliminate these
limitations.

SUMMARY
Most human endeavors have a perceptual component. For exam-
ple, keen visual perception is required in sports, medicine, science,
games like chess, and a wide range of skilled behavior. Thus
research on real-world perceptual expertise has potential theo-
retical and applied impacts to many domains. Here we briefly
outlined at least some of the practical considerations that factor
into research on real-world perceptual expertise. Several of these
considerations are things that researchers often fret over behind
the scenes without making it into a typical research publication,
so in that sense we hope this brief perspective fills a small but
important hole in the literature.
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